8,092 research outputs found

    Practical applications of multi-agent systems in electric power systems

    Get PDF
    The transformation of energy networks from passive to active systems requires the embedding of intelligence within the network. One suitable approach to integrating distributed intelligent systems is multi-agent systems technology, where components of functionality run as autonomous agents capable of interaction through messaging. This provides loose coupling between components that can benefit the complex systems envisioned for the smart grid. This paper reviews the key milestones of demonstrated agent systems in the power industry and considers which aspects of agent design must still be addressed for widespread application of agent technology to occur

    Fog-enabled Edge Learning for Cognitive Content-Centric Networking in 5G

    Full text link
    By caching content at network edges close to the users, the content-centric networking (CCN) has been considered to enforce efficient content retrieval and distribution in the fifth generation (5G) networks. Due to the volume, velocity, and variety of data generated by various 5G users, an urgent and strategic issue is how to elevate the cognitive ability of the CCN to realize context-awareness, timely response, and traffic offloading for 5G applications. In this article, we envision that the fundamental work of designing a cognitive CCN (C-CCN) for the upcoming 5G is exploiting the fog computing to associatively learn and control the states of edge devices (such as phones, vehicles, and base stations) and in-network resources (computing, networking, and caching). Moreover, we propose a fog-enabled edge learning (FEL) framework for C-CCN in 5G, which can aggregate the idle computing resources of the neighbouring edge devices into virtual fogs to afford the heavy delay-sensitive learning tasks. By leveraging artificial intelligence (AI) to jointly processing sensed environmental data, dealing with the massive content statistics, and enforcing the mobility control at network edges, the FEL makes it possible for mobile users to cognitively share their data over the C-CCN in 5G. To validate the feasibility of proposed framework, we design two FEL-advanced cognitive services for C-CCN in 5G: 1) personalized network acceleration, 2) enhanced mobility management. Simultaneously, we present the simulations to show the FEL's efficiency on serving for the mobile users' delay-sensitive content retrieval and distribution in 5G.Comment: Submitted to IEEE Communications Magzine, under review, Feb. 09, 201

    Multi Agent Systems

    Get PDF
    Research on multi-agent systems is enlarging our future technical capabilities as humans and as an intelligent society. During recent years many effective applications have been implemented and are part of our daily life. These applications have agent-based models and methods as an important ingredient. Markets, finance world, robotics, medical technology, social negotiation, video games, big-data science, etc. are some of the branches where the knowledge gained through multi-agent simulations is necessary and where new software engineering tools are continuously created and tested in order to reach an effective technology transfer to impact our lives. This book brings together researchers working in several fields that cover the techniques, the challenges and the applications of multi-agent systems in a wide variety of aspects related to learning algorithms for different devices such as vehicles, robots and drones, computational optimization to reach a more efficient energy distribution in power grids and the use of social networks and decision strategies applied to the smart learning and education environments in emergent countries. We hope that this book can be useful and become a guide or reference to an audience interested in the developments and applications of multi-agent systems

    Context-Aware Information Retrieval for Enhanced Situation Awareness

    No full text
    In the coalition forces, users are increasingly challenged with the issues of information overload and correlation of information from heterogeneous sources. Users might need different pieces of information, ranging from information about a single building, to the resolution strategy of a global conflict. Sometimes, the time, location and past history of information access can also shape the information needs of users. Information systems need to help users pull together data from disparate sources according to their expressed needs (as represented by system queries), as well as less specific criteria. Information consumers have varying roles, tasks/missions, goals and agendas, knowledge and background, and personal preferences. These factors can be used to shape both the execution of user queries and the form in which retrieved information is packaged. However, full automation of this daunting information aggregation and customization task is not possible with existing approaches. In this paper we present an infrastructure for context-aware information retrieval to enhance situation awareness. The infrastructure provides each user with a customized, mission-oriented system that gives access to the right information from heterogeneous sources in the context of a particular task, plan and/or mission. The approach lays on five intertwined fundamental concepts, namely Workflow, Context, Ontology, Profile and Information Aggregation. The exploitation of this knowledge, using appropriate domain ontologies, will make it feasible to provide contextual assistance in various ways to the work performed according to a user’s taskrelevant information requirements. This paper formalizes these concepts and their interrelationships

    A novel multi-level and community-based agent ecosystem to support customers dynamic decision-making in smart grids

    Get PDF
    Electrical systems have evolved at a fast pace over the past years, particularly in response to the current environmental and climate challenges. Consequently, the European Union and the United Nations have encouraged the development of a more sustainable energy strategy. This strategy triggered a paradigm shift in energy consumption and production, which becoming increasingly distributed, resulted in the development and emergence of smart energy grids. Multi-agent systems are one of the most widely used artificial intelligence concepts in smart grids. Both multi-agent systems and smart grids are distributed, so there is correspondence between the used technology and the network's complex reality. Due to the wide variety of multi-agent systems applied to smart grids, which typically have very specific goals, the ability to model the network as a whole may be compromised, as communication between systems is typically non-existent. This dissertation, therefore, proposes an agent-based ecosystem to model smart grids in which different agent-based systems can coexist. This dissertation aims to conceive, implement, test, and validate a new agent-based ecosystem, entitled A4SG (agent-based ecosystem for smart grids modelling), which combines the concepts of multi-agent systems and agent communities to enable the modelling and representation of smart grids and the entities that compose them. The proposed ecosystem employs an innovative methodology for managing static or dynamic interactions present in smart grids. The creation of a solution that allows the integration of existing systems into an ecosystem, enables the representation of smart grids in a realistic and comprehensive manner. A4SG integrates several functionalities that support the ecosystem's management, also conceived, implemented, tested, and validated in this dissertation. Two mobility functionalities are proposed: one that allows agents to move between physical machines and another that allows "virtual" mobility, where agents move between agent communities to improve the context for the achievement of their objectives. In order to prevent an agent from becoming overloaded, a novel functionality is proposed to enable the creation of agents that function as extensions of the main agent (i.e., branch agents), allowing the distribution of objectives among the various extensions of the main agent. Several case studies, which test the proposed services and functionalities individually and the ecosystem as a whole, were used to test and validate the proposed solution. These case studies were conducted in realistic contexts using data from multiple sources, including energy communities. The results indicate that the used methodologies can increase participation in demand response events, increasing the fitting between consumers and aggregators from 12 % to 69 %, and improve the strategies used in energy transaction markets, allowing an energy community of 50 customers to save 77.0 EUR per week.Os últimos anos têm sido de mudança nos sistemas elétricos, especialmente devido aos atuais desafios ambientais e climáticos. A procura por uma estratégia mais sustentável para o domínio da energia tem sido promovida pela União Europeia e pela Organização das Nações Unidas. A mudança de paradigma no que toca ao consumo e produção de energia, que acontece, cada vez mais, de forma distribuída, tem levado à emergência das redes elétricas inteligentes. Os sistemas multi-agente são um dos conceitos, no domínio da inteligência artificial, mais aplicados em redes inteligentes. Tanto os sistemas multi-agente como as redes inteligentes têm uma natureza distribuída, existindo por isso um alinhamento entre a tecnologia usada e a realidade complexa da rede. Devido a existir uma vasta oferta de sistemas multi-agente aplicados a redes inteligentes, normalmente com objetivos bastante específicos, a capacidade de modelar a rede como um todo pode ficar comprometida, porque a comunicação entre sistemas é, geralmente, inexistente. Por isso, esta dissertação propõe um ecossistema baseado em agentes para modelar as redes inteligentes, onde vários sistemas de agentes coexistem. Esta dissertação pretende conceber, implementar, testar, e validar um novo ecossistema multiagente, intitulado A4SG (agent-based ecosystem for smart grids modelling), que combina os conceitos de sistemas multi-agente e comunidades de agentes, permitindo a modelação e representação de redes inteligentes e das suas entidades. O ecossistema proposto utiliza uma metodologia inovadora para gerir as interações presentes nas redes inteligentes, sejam elas estáticas ou dinâmicas. A criação de um ecossistema que permite a integração de sistemas já existentes, cria a possibilidade de uma representação realista e detalhada das redes de energia. O A4SG integra diversas funcionalidades, também estas concebidas, implementadas, testadas, e validadas nesta dissertação, que suportam a gestão do próprio ecossistema. São propostas duas funcionalidades de mobilidade, uma que permite aos agentes mover-se entre máquinas físicas, e uma que permite uma mobilidade “virtual”, onde os agentes se movem entre comunidades de agentes, de forma a melhorar o contexto para a execução dos seus objetivos. É também proposta uma nova funcionalidade que permite a criação de agentes que funcionam como uma extensão de um agente principal, com o objetivo de evitar a sobrecarga de um agente, permitindo a distribuição de objetivos entre as várias extensões do agente principal. A solução proposta foi testada e validada por vários casos de estudo, que testam os serviços e funcionalidades propostas individualmente, e o ecossistema como um todo. Estes casos de estudo foram executados em contextos realistas, usando dados provenientes de diversas fontes, tais como comunidades de energia. Os resultados demonstram que as metodologias utilizadas podem melhorar a participação em eventos de demand response, subindo a adequação entre consumidores e agregadores de 12 % para 69 %, e melhorar as estratégias utilizadas em mercados de transações de energia, permitindo a uma comunidade de energia com 50 consumidores poupar 77,0 EUR por semana
    • …
    corecore