50 research outputs found

    De-Centralized and Centralized Control for Realistic EMS Maglev Systems

    Get PDF
    A comparative study of de-centralized and centralized controllers when used with real EMS Maglev Systems is introduced. This comparison is divided into two parts. Part I is concerned with numerical simulation and experimental testing on a two ton six-magnet EMS Maglev vehicle. Levitation and lateral control with these controllers individually and when including flux feedback control in combination with these controllers to enhance stability are introduced. The centralized controller is better than the de-centralized one when the system is exposed to a lateral disturbing force such as wind gusts. The flux feedback control when combined with de-centralized or centralized controllers does improve the stability and is more resistant and robust with respect to the air gap variations. Part II is concerned with the study of Maglev vehicle-girder dynamic interaction system and the comparison between these two controllers on this typical system based on performance and ride quality achieved. Numerical simulations of the ODU EMS Maglev vehicle interacting with girder are conducted with these two different controllers. The de-centralized and centralized control for EMS Maglev systems that interact with a flexible girder provides similar ride quality

    Robustness and Control of a Magnetically Levitated Transportation System

    Get PDF
    Electromagnetic suspension of Magnetic Levitation Vehicles (Maglev) has been studied for many years as an alternative to wheel-on rail transportation systems. In this work, design and implementation of control systems for a Maglev laboratory experiment and a Maglev vehicle under development at Old Dominion University are described. Both plants are modeled and simulated with consideration of issues associated with system non-linearity, structural flexibility and electromagnetic force modeling. Discussion concerning different control strategies, namely centralized and decentralized approaches are compared and contrasted in this work. Different types of electromagnetic non-linearities are considered and described to establish a convenient method for modeling such a system. It is shown how a Finite Element structural model can be incorporated into the system to obtain transfer function notation. Influence of the dynamic interaction between the Maglev track and the Maglev vehicle is discussed and supported by both analytical results and theoretical examples. Finally, several control laws designed to obtain stable and robust levitation are explored in detail

    A Hybrid Controller for Stability Robustness, Performance Robustness, and Disturbance Attenuation of a Maglev System

    Get PDF
    Devices using magnetic levitation (maglev) offer the potential for friction-free, high-speed, and high-precision operation. Applications include frictionless bearings, high-speed ground transportation systems, wafer distribution systems, high-precision positioning stages, and vibration isolation tables. Maglev systems rely on feedback controllers to maintain stable levitation. Designing such feedback controllers is challenging since mathematically the electromagnetic force is nonlinear and there is no local minimum point on the levitating force function. As a result, maglev systems are open-loop unstable. Additionally, maglev systems experience disturbances and system parameter variations (uncertainties) during operation. A successful controller design for maglev system guarantees stability during levitating despite system nonlinearity, and desirable system performance despite disturbances and system uncertainties. This research investigates five controllers that can achieve stable levitation: PD, PID, lead, model reference control, and LQR/LQG. It proposes an acceleration feedback controller (AFC) design that attenuates disturbance on a maglev system with a PD controller. This research proposes three robust controllers, QFT, Hinf , and QFT/Hinf , followed by a novel AFC-enhanced QFT/Hinf (AQH) controller. The AQH controller allows system robustness and disturbance attenuation to be achieved in one controller design. The controller designs are validated through simulations and experiments. In this research, the disturbances are represented by force disturbances on the levitated object, and the system uncertainties are represented by parameter variations. The experiments are conducted on a 1 DOF maglev testbed, with system performance including stability, disturbance rejection, and robustness being evaluated. Experiments show that the tested controllers can maintain stable levitation. Disturbance attenuation is achieved with the AFC. The robust controllers, QFT, Hinf , QFT/ Hinf, and AQH successfully guarantee system robustness. In addition, AQH controller provides the maglev system with a disturbance attenuation feature. The contributions of this research are the design and implementation of the acceleration feedback controller, the QFT/ Hinf , and the AQH controller. Disturbance attenuation and system robustness are achieved with these controllers. The controllers developed in this research are applicable to similar maglev systems

    Decoupling Control Design for the Module Suspension Control System in Maglev Train

    Get PDF
    An engineering oriented decoupling control method for the module suspension system is proposed to solve the coupling issues of the two levitation units of the module in magnetic levitation (maglev) train. According to the format of the system transfer matrix, a modified adjoint transfer matrix based decoupler is designed. Then, a compensated controller is obtained in the light of a desired close loop system performance. Optimization between the performance index and robustness index is also carried out to determine the controller parameters. However, due to the high orders and complexity of the obtained resultant controller, model reduction method is adopted to get a simplified controller with PID structure. Considering the modeling errors of the module suspension system as the uncertainties, experiments have been performed to obtain the weighting function of the system uncertainties. By using this, the robust stability of the decoupled module suspension control system is checked. Finally, the effectiveness of the proposed decoupling design method is validated by simulations and physical experiments. The results illustrate that the presented decoupling design can result in a satisfactory decoupling and better dynamic performance, especially promoting the reliability of the suspension control system in practical engineering application

    Piecewise adaptive controller design for position control of magnetic levitation system

    Get PDF
    Magnetic levitation is a new technology gaining popularity for use in many applications,the most notable being rail transportation. Magnetic levitation, or maglev, utilises high powered magnets to suspend objects off the ground. Electromagnets are known to exhibit severe nonlinear characteristics and providing precise control of position is no simple task. The ECP Model 730 magnetic levitation development system was studied in this project as the basis for the design of a suitable control system. The system model was developed and the system nonlinearities were identified. A linearised approximation of the system model was developed and a PID controller designed. The designed controller was simulated in Simulink and managed to force the magnet position to settle in 790 ms with 5.6% overshoot. It was found that nonlinearities caused the controller effectiveness to degrade as the magnet position moved away from the desired operating point. A piecewise model of the system was developed and controllers were designed to de- signed to work over the entire range of operation. An adaptive control strategy based on gain scheduling was implemented into the system and an improvement of 200 ms and 2.47% overshoot was observed for a 0.5 cm change in operating condition. The controller managed to switch between operating points but was shown to exhibit poor disturbance rejection when its position was continuously changed. Results suggested that an adaptive PID controller is capable of adapting to changes in its operating condition, but tuning it to achieve desired performance specifications is difficult, and other controllers may be more appropriate

    Nonlinear dynamic modeling and fuzzy sliding-mode controlling of electromagnetic levitation system of low-speed maglev train

    Get PDF
    The electromagnet levitation system (ELS) of low-speed maglev train is taken as the research object. The nonlinear dynamics and control law of ELS are discussed. Specifically, by employing the Euler-Lagrange’s method, a nonlinear dynamic model is constructed for the single-ELS. Then, the linear control law is studied, which has a disadvantage of weak robustness. To improve the performance of the controller, a fuzzy sliding-mode control law is proposed. According to the dynamic nonlinear model, a novel sliding surface which can make the system reach the stable point within the finite time is presented. Moreover, the fuzzy inference method is utilized to slow down the speed of the states crossing the sliding surface. The simulation results demonstrate that the global robustness of external disturbance and parameter perturbation can be achieved through the proposed control law. And the chattering phenomenon can be reduced significantly. Finally, the experiments are also implemented to examine its practical dynamic performance of the proposed control law

    Controller Design for Magnetic Levitation System

    Get PDF
    Magnetic Levitation is a method by which an object is suspended in air by means of magnetic force. Earnshaw stated that static arrangements of magnet cannot levitate a body. The exception comes in case of diamagnetic and superconducting materials and by controlling magnetic field by control method. Diamagnetic materials or superconducting materials when placed in magnetic field produce magnetic field in opposite direction. Here the problem of controlling the magnetic field by control method is taken up to levitate a metal hollow sphere. The control problem is to supply controlled current to coil such that the magnetic force on the levitated body and gravitational force acting on it are exactly equal. Thus the magnetic levitation system is inherently unstable without any control action. It is desirable to not only levitate the object but also at desired position or continuously track a desired path. Here a linear and two nonlinear controllers are designed for magnetic levitation system. First a robust adaptive backstepping controller is designed for the system and simulated. The simulation results shows tracking error less than 0.0001m. The immeasurable state present is estimated by Kreisselmeier filter. The Kreisselmeier filter is a nonlinear estimator as well as preserves the output feedback form. However the control output is too high. To counteract the above problem Nesic backstepping controller is designed for the system by taking Euler approximate model of the system. The controller output is well within the range of 0.5~1 voltage. The reference tracking is also verified in simulation and the tracking error comes in range of 0.00015m. A linear controller is also designed for MagLev system as the region of operation of magnetic levitation setup is too small. A two degree freedom (2DOF) PID controller is designed satisfying a desired characteristics equation. The controller parameters are obtained by pole placement technique. The 2DOF PID controller is simulated and experimentally validated and it is seen that better result are obtained in 2DOF PID than 1DOF PID controller

    Third International Symposium on Magnetic Suspension Technology

    Get PDF
    In order to examine the state of technology of all areas of magnetic suspension and to review recent developments in sensors, controls, superconducting magnet technology, and design/implementation practices, the Third International Symposium on Magnetic Suspension Technology was held at the Holiday Inn Capital Plaza in Tallahassee, Florida on 13-15 Dec. 1995. The symposium included 19 sessions in which a total of 55 papers were presented. The technical sessions covered the areas of bearings, superconductivity, vibration isolation, maglev, controls, space applications, general applications, bearing/actuator design, modeling, precision applications, electromagnetic launch and hypersonic maglev, applications of superconductivity, and sensors

    Advance control strategies for Maglev suspension systems

    Get PDF
    The Birmingham Maglev developed over fifteen years ago has successfully demonstrated the inherent advantages of low speed maglev over comparable wheeled systems. It remains the only commercially operational Maglev in the world today. To develop the next generation of Maglev vehicles which will overcome some of the limitations of the Birmingham system, such as chassis length and cost, the following issues are addressed in this thesis. 1) The possibility of interaction between the chassis resonant frequencies and the suspension control system causing poor ride quality and at worst instability, are formally analysed. In the Birmingham vehicle a stiff chassis (fundamental bending mode 40Hz) is used avoiding significant interaction with the suspension controller. Using advanced control strategies the low frequency chassis resonances can be controlled allowing a vehicle structure to be used with a fundamental bending mode of about 12Hz. 2) A modem control strategy is developed which delivers an improved ride quality compared with the present classical control system despite having to operate with a 'soft' chassis. Kalman filters are digitally implemented and conclusions drawn about their performance. The classical control strategy is also successfully demonstrated on a 3 m long 'flexible beam' rig. 3) An associated Maglev suspension problem for the response to ramp inputs such as the transition onto gradients which causes either a large steady state tracking error or a worsening ride quality is addressed by modern control theory using integral feedback techniques and classical theory using third order filters. These controllers are globally optimised by a multi-objective parameter optimisation system which formally considers the conflicts inherent in a suspension system between response to stochastic inputs and deterministic inputs
    corecore