3,373 research outputs found

    On-line multiobjective automatic control system generation by evolutionary algorithms

    Get PDF
    Evolutionary algorithms are applied to the on- line generation of servo-motor control systems. In this paper, the evolving population of controllers is evaluated at run-time via hardware in the loop, rather than on a simulated model. Disturbances are also introduced at run-time in order to pro- duce robust performance. Multiobjective optimisation of both PI and Fuzzy Logic controllers is considered. Finally an on-line implementation of Genetic Programming is presented based around the Simulink standard blockset. The on-line designed controllers are shown to be robust to both system noise and ex- ternal disturbances while still demonstrating excellent steady- state and dvnamic characteristics

    Design an intelligent controller for full vehicle nonlinear active suspension systems

    Get PDF
    The main objective of designed the controller for a vehicle suspension system is to reduce the discomfort sensed by passengers which arises from road roughness and to increase the ride handling associated with the pitching and rolling movements. This necessitates a very fast and accurate controller to meet as much control objectives, as possible. Therefore, this paper deals with an artificial intelligence Neuro-Fuzzy (NF) technique to design a robust controller to meet the control objectives. The advantage of this controller is that it can handle the nonlinearities faster than other conventional controllers. The approach of the proposed controller is to minimize the vibrations on each corner of vehicle by supplying control forces to suspension system when travelling on rough road. The other purpose for using the NF controller for vehicle model is to reduce the body inclinations that are made during intensive manoeuvres including braking and cornering. A full vehicle nonlinear active suspension system is introduced and tested. The robustness of the proposed controller is being assessed by comparing with an optimal Fractional Order (FOPID) controller. The results show that the intelligent NF controller has improved the dynamic response measured by decreasing the cost function

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    Managing uncertainty in sound based control for an autonomous helicopter

    Get PDF
    In this paper we present our ongoing research using a multi-purpose, small and low cost autonomous helicopter platform (Flyper ). We are building on previously achieved stable control using evolutionary tuning. We propose a sound based supervised method to localise the indoor helicopter and extract meaningful information to enable the helicopter to further stabilise its flight and correct its flightpath. Due to the high amount of uncertainty in the data, we propose the use of fuzzy logic in the signal processing of the sound signature. We discuss the benefits and difficulties using type-1 and type-2 fuzzy logic in this real-time systems and give an overview of our proposed system

    Supervised Control of a Flying Performing Robot using its Intrinsic Sound

    Get PDF
    We present the current results of our ongoing research in achieving efficient control of a flying robot for a wide variety of possible applications. A lightweight small indoor helicopter has been equipped with an embedded system and relatively simple sensors to achieve autonomous stable flight. The controllers have been tuned using genetic algorithms to further enhance flight stability. A number of additional sensors would need to be attached to the helicopter to enable it to sense more of its environment such as its current location or the location of obstacles like the walls of the room it is flying in. The lightweight nature of the helicopter very much restricts the amount of sensors that can be attached to it. We propose utilising the intrinsic sound signatures of the helicopter to locate it and to extract features about its current state, using another supervising robot. The analysis of this information is then sent back to the helicopter using an uplink to enable the helicopter to further stabilise its flight and correct its position and flight path without the need for additional sensors

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade
    • …
    corecore