916 research outputs found

    FASTER: Facilitating Analysis and Synthesis Technologies for Effective Reconfiguration

    Get PDF
    The FASTER (Facilitating Analysis and Synthesis Technologies for Effective Reconfiguration) EU FP7 project, aims to ease the design and implementation of dynamically changing hardware systems. Our motivation stems from the promise reconfigurable systems hold for achieving high performance and extending product functionality and lifetime via the addition of new features that operate at hardware speed. However, designing a changing hardware system is both challenging and time-consuming. FASTER facilitates the use of reconfigurable technology by providing a complete methodology enabling designers to easily specify, analyze, implement and verify applications on platforms with general-purpose processors and acceleration modules implemented in the latest reconfigurable technology. Our tool-chain supports both coarse- and fine-grain FPGA reconfiguration, while during execution a flexible run-time system manages the reconfigurable resources. We target three applications from different domains. We explore the way each application benefits from reconfiguration, and then we asses them and the FASTER tools, in terms of performance, area consumption and accuracy of analysis

    Application of novel technologies for the development of next generation MR compatible PET inserts

    Get PDF
    Multimodal imaging integrating Positron Emission Tomography and Magnetic Resonance Imaging (PET/MRI) has professed advantages as compared to other available combinations, allowing both functional and structural information to be acquired with very high precision and repeatability. However, it has yet to be adopted as the standard for experimental and clinical applications, due to a variety of reasons mainly related to system cost and flexibility. A hopeful existing approach of silicon photodetector-based MR compatible PET inserts comprised by very thin PET devices that can be inserted in the MRI bore, has been pioneered, without disrupting the market as expected. Technological solutions that exist and can make this type of inserts lighter, cost-effective and more adaptable to the application need to be researched further. In this context, we expand the study of sub-surface laser engraving (SSLE) for scintillators used for PET. Through acquiring, measuring and calibrating the use of a SSLE setting we study the effect of different engraving configurations on detection characteristics of the scintillation light by the photosensors. We demonstrate that apart from cost-effectiveness and ease of application, SSLE treated scintillators have similar spatial resolution and superior sensitivity and packing fraction as compared to standard pixelated arrays, allowing for shorter crystals to be used. Flexibility of design is benchmarked and adoption of honeycomb architecture due to geometrical advantages is proposed. Furthermore, a variety of depth-of-interaction (DoI) designs are engraved and studied, greatly enhancing applicability in small field-of-view tomographs, such as the intended inserts. To adapt to this need, a novel approach for multi-layer DoI characterization has been developed and is demonstrated. Apart from crystal treatment, considerations on signal transmission and processing are addressed. A double time-over-threshold (ToT) method is proposed, using the statistics of noise in order to enhance precision. This method is tested and linearity results demonstrate applicability for multiplexed readout designs. A study on analog optical wireless communication (aOWC) techniques is also performed and proof of concept results presented. Finally, a ToT readout firmware architecture, intended for low-cost FPGAs, has been developed and is described. By addressing the potential development, applicability and merits of a range of transdisciplinary solutions, we demonstrate that with these techniques it is possible to construct lighter, smaller, lower consumption, cost-effective MRI compatible PET inserts. Those designs can make PET/MRI multimodality the dominant clinical and experimental imaging approach, enhancing researcher and physician insight to the mysteries of life.La combinación multimodal de Tomografía por Emisión de Positrones con la Imagen de Resonancia Magnética (PET/MRI, de sus siglas en inglés) tiene clara ventajas en comparación con otras técnicas multimodales actualmente disponibles, dada su capacidad para registrar información funcional e información estructural con mucha precisión y repetibilidad. Sin embargo, esta técnica no acaba de penetrar en la práctica clínica debido en gran parte a alto coste. Las investigaciones que persiguen mejorar el desarrollo de insertos de PET basados en fotodetectores de silicio y compatibles con MRI, aunque han sido intensas y han generado soluciones ingeniosas, todavía no han conseguido encontrar las soluciones que necesita la industria. Sin embargo, existen opciones todavía sin explorar que podrían ayudar a evolucionar este tipo de insertos consiguiendo dispositivos más ligeros, baratos y con mejores prestaciones. Esta tesis profundiza en el estudio de grabación sub-superficie con láser (SSLE) para el diseño de los cristales centelladores usados en los sistemas PET. Para ello hemos caracterizado, medido y calibrado un procedimiento SSLE, y a continuación hemos estudiado el efecto que tienen sobre las especificaciones del detector las diferentes configuraciones del grabado. Demostramos que además de la rentabilidad y facilidad de uso de esta técnica, los centelladores SSLE tienen resolución espacial equivalente y sensibilidad y fracción de empaquetamiento superiores a las matrices de centelleo convencionales, lo que posibilita utilizar cristales más cortos para conseguir la misma sensibilidad. Estos diseños también permiten medir la profundidad de la interacción (DoI), lo que facilita el uso de estos diseños en tomógrafos de radio pequeño, como pueden ser los sistemas preclínicos, los dedicados (cabeza o mama) o los insertos para MRI. Además de trabajar en el tratamiento de cristal de centelleo, hemos considerado nuevas aproximaciones al procesamiento y transmisión de la señal. Proponemos un método innovador de doble medida de tiempo sobre el umbral (ToT) que integra una evaluación de la estadística del ruido con el propósito de mejorar la precisión. El método se ha validado y los resultados demuestran su viabilidad de uso incluso en conjuntos de señales multiplexadas. Un estudio de las técnicas de comunicación óptica analógica e inalámbrica (aOWC) ha permitido el desarrollo de una nueva propuesta para comunicar las señales del detector PET insertado en el gantry a un el procesador de señal externo, técnica que se ha validado en un demostrador. Finalmente, se ha propuesto y demostrado una nueva arquitectura de análisis de señal ToT implementada en firmware en FPGAs de bajo coste. La concepción y desarrollo de estas ideas, así como la evaluación de los méritos de las diferentes soluciones propuestas, demuestran que con estas técnicas es posible construir insertos de PET compatibles con sistemas MRI, que serán más ligeros y compactos, con un reducido consumo y menor coste. De esta forma se contribuye a que la técnica multimodal PET/MRI pueda penetrar en la clínica, mejorando la comprensión que médicos e investigadores puedan alcanzar en su estudio de los misterios de la vida.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Andrés Santos Lleó.- Secretario: Luis Hernández Corporales.- Vocal: Giancarlo Sportell

    Late-bound code generation

    Get PDF
    Each time a function or method is invoked during the execution of a program, a stream of instructions is issued to some underlying hardware platform. But exactly what underlying hardware, and which instructions, is usually left implicit. However in certain situations it becomes important to control these decisions. For example, particular problems can only be solved in real-time when scheduled on specialised accelerators, such as graphics coprocessors or computing clusters. We introduce a novel operator for hygienically reifying the behaviour of a runtime function instance as a syntactic fragment, in a language which may in general differ from the source function definition. Translation and optimisation are performed by recursively invoked, dynamically dispatched code generators. Side-effecting operations are permitted, and their ordering is preserved. We compare our operator with other techniques for pragmatic control, observing that: the use of our operator supports lifting arbitrary mutable objects, and neither requires rewriting sections of the source program in a multi-level language, nor interferes with the interface to individual software components. Due to its lack of interference at the abstraction level at which software is composed, we believe that our approach poses a significantly lower barrier to practical adoption than current methods. The practical efficacy of our operator is demonstrated by using it to offload the user interface rendering of a smartphone application to an FPGA coprocessor, including both statically and procedurally defined user interface components. The generated pipeline is an application-specific, statically scheduled processor-per-primitive rendering pipeline, suitable for place-and-route style optimisation. To demonstrate the compatibility of our operator with existing languages, we show how it may be defined within the Python programming language. We introduce a transformation for weakening mutable to immutable named bindings, termed let-weakening, to solve the problem of propagating information pertaining to named variables between modular code generating units.Open Acces

    Acceleration Techniques for Sparse Recovery Based Plane-wave Decomposition of a Sound Field

    Get PDF
    Plane-wave decomposition by sparse recovery is a reliable and accurate technique for plane-wave decomposition which can be used for source localization, beamforming, etc. In this work, we introduce techniques to accelerate the plane-wave decomposition by sparse recovery. The method consists of two main algorithms which are spherical Fourier transformation (SFT) and sparse recovery. Comparing the two algorithms, the sparse recovery is the most computationally intensive. We implement the SFT on an FPGA and the sparse recovery on a multithreaded computing platform. Then the multithreaded computing platform could be fully utilized for the sparse recovery. On the other hand, implementing the SFT on an FPGA helps to flexibly integrate the microphones and improve the portability of the microphone array. For implementing the SFT on an FPGA, we develop a scalable FPGA design model that enables the quick design of the SFT architecture on FPGAs. The model considers the number of microphones, the number of SFT channels and the cost of the FPGA and provides the design of a resource optimized and cost-effective FPGA architecture as the output. Then we investigate the performance of the sparse recovery algorithm executed on various multithreaded computing platforms (i.e., chip-multiprocessor, multiprocessor, GPU, manycore). Finally, we investigate the influence of modifying the dictionary size on the computational performance and the accuracy of the sparse recovery algorithms. We introduce novel sparse-recovery techniques which use non-uniform dictionaries to improve the performance of the sparse recovery on a parallel architecture

    A Hierarchical Architectural Framework for Securing Unmanned Aerial Systems

    Get PDF
    Unmanned Aerial Systems (UAS) are becoming more widely used in the new era of evolving technology; increasing performance while decreasing size, weight, and cost. A UAS equipped with a Flight Control System (FCS) that can be used to fly semi- or fully-autonomous is a prime example of a Cyber Physical and Safety Critical system. Current Cyber-Physical defenses against malicious attacks are structured around security standards for best practices involving the development of protocols and the digital software implementation. Thus far, few attempts have been made to embed security into the architecture of the system considering security as a holistic problem. Therefore, a Hierarchical, Embedded, Cyber Attack Detection (HECAD) framework is developed to provide security in a holistic manor, providing resiliency against cyber-attacks as well as introducing strategies for mitigating and dealing with component failures. Traversing the hardware/software barrier, HECAD provides detection of malicious faults at the hardware and software level; verified through the development of an FPGA implementation and tested using a UAS FCS

    OpenMPD: A Low-Level Presentation Engine for Multimodal Particle-Based Displays

    Get PDF
    Phased arrays of transducers have been quickly evolving in terms of software and hardware with applications in haptics (acoustic vibrations), display (levitation), and audio. Most recently, Multimodal Particle-based Displays (MPDs) have even demonstrated volumetric content that can be seen, heard, and felt simultaneously, without additional instrumentation. However, current software tools only support individual modalities and they do not address the integration and exploitation of the multi-modal potential of MPDs. This is because there is no standardized presentation pipeline tackling the challenges related to presenting such kind of multi-modal content (e.g., multi-modal support, multi-rate synchronization at 10 KHz, visual rendering or synchronization and continuity). This article presents OpenMPD, a low-level presentation engine that deals with these challenges and allows structured exploitation of any type of MPD content (i.e., visual, tactile, audio). We characterize OpenMPD’s performance and illustrate how it can be integrated into higher-level development tools (i.e., Unity game engine). We then illustrate its ability to enable novel presentation capabilities, such as support of multiple MPD contents, dexterous manipulations of fast-moving particles, or novel swept-volume MPD content

    Real Time 3-D Graphics Processing Hardware Design using Field-Programmable Gate Arrays.

    Get PDF
    Three dimensional graphics processing requires many complex algebraic and matrix based operations to be performed in real-time. In early stages of graphics processing, such tasks were delegated to a Central Processing Unit (CPU). Over time as more complex graphics rendering was demanded, CPU solutions became inadequate. To meet this demand, custom hardware solutions that take advantage of pipelining and massive parallelism become more preferable to CPU software based solutions. This fact has lead to the many custom hardware solutions that are available today. Since real time graphics processing requires extreme high performance, hardware solutions using Application Specific Integrated Circuits (ASICs) are the standard within the industry. While ASICs are a more than adequate solution for implementing high performance custom hardware, the design, implementation and testing of ASIC based designs are becoming cost prohibitive due to the massive up front verification effort needed as well as the cost of fixing design defects.Field Programmable Gate Arrays (FPGAs) provide an alternative to the ASIC design flow. More importantly, in recent years FPGA technology have begun to improve in performance to the point where ASIC and FPGA performance has become comparable. In addition, FPGAs address many of the issues of the ASIC design flow. The ability to reconfigure FPGAs reduces the upfront verification effort and allows design defects to be fixed easily. This thesis demonstrates that a 3-D graphics processor implementation on and FPGA is feasible by implementing both a two dimensional and three dimensional graphics processor prototype. By using a Xilinx Virtex 5 ML506 FPGA development kit a fully functional wireframe graphics rendering engine is implemented using VHDL and Xilinx's development tools. A VHDL testbench was designed to verify that the graphics engine works functionally. This is followed by synthesizing the design and real hardware and developing test applications to verify functionality and performance of the design. This thesis provides the ground work for push forward the use of FPGA technology in graphics processing applications

    Compiling and optimizing spreadsheets for FPGA and multicore execution

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007."September 2007."Includes bibliographical references (p. 102-104).A major barrier to developing systems on multicore and FPGA chips is an easy-to-use development environment. This thesis presents the RhoZeta spreadsheet compiler and Catalyst optimization system for programming multiprocessors and FPGAs. Any spreadsheet frontend may be extended to work with RhoZeta's multiple interpreters and behavioral abstraction mechanisms. RhoZeta synchronizes a variety of cell interpreters acting on a global memory space. RhoZeta can also compile a group of cells to multithreaded C or Verilog. The result is an easy-to-use interface for programming multicore microprocessors and FPGAs. A spreadsheet environment presents parallelism and locality issues of modem hardware directly to the user and allows for a simple global memory synchronization model. Catalyst is a spreadsheet graph rewriting system based on performing behaviorally invariant guarded atomic actions while a system is being interpreted by RhoZeta. A number of optimization macros were developed to perform speculation, resource sharing and propagation of static assignments through a circuit. Parallelization of a 64-bit serial leading-zero-counter is demonstrated with Catalyst. Fault tolerance macros were also developed in Catalyst to protect against dynamic faults and to offset costs associated with testing semiconductors for static defects. A model for partitioning, placing and profiling spreadsheet execution in a heterogeneous hardware environment is also discussed. The RhoZeta system has been used to design several multithreaded and FPGA applications including a RISC emulator and a MIDI controlled modular synthesizer.by Amir Hirsch.M.Eng
    corecore