58,227 research outputs found

    Pitfalls of Agent-Oriented Development

    No full text
    While the theoretical and experimental foundations of agent-based systems are becoming increasingly well understood, comparatively little effort has been devoted to understanding the pragmatics of (multi-) agent systems development - the everyday reality of carrying out an agent-based development project. As a result, agent system developers are needlessly repeating the same mistakes, with the result that, at best, resources are wasted - at worst, projects fail. This paper identifies the main pitfalls that await the agent system developer, and where possible, makes tentative recommendations for how these pitfalls can be avoided or rectified

    Logic-Based Specification Languages for Intelligent Software Agents

    Full text link
    The research field of Agent-Oriented Software Engineering (AOSE) aims to find abstractions, languages, methodologies and toolkits for modeling, verifying, validating and prototyping complex applications conceptualized as Multiagent Systems (MASs). A very lively research sub-field studies how formal methods can be used for AOSE. This paper presents a detailed survey of six logic-based executable agent specification languages that have been chosen for their potential to be integrated in our ARPEGGIO project, an open framework for specifying and prototyping a MAS. The six languages are ConGoLog, Agent-0, the IMPACT agent programming language, DyLog, Concurrent METATEM and Ehhf. For each executable language, the logic foundations are described and an example of use is shown. A comparison of the six languages and a survey of similar approaches complete the paper, together with considerations of the advantages of using logic-based languages in MAS modeling and prototyping.Comment: 67 pages, 1 table, 1 figure. Accepted for publication by the Journal "Theory and Practice of Logic Programming", volume 4, Maurice Bruynooghe Editor-in-Chie

    Lambda Calculus in Core Aldwych

    Get PDF
    Core Aldwych is a simple model for concurrent computation, involving the concept of agents which communicate through shared variables. Each variable will have exactly one agent that can write to it, and its value can never be changed once written, but a value can contain further variables which are written to later. A key aspect is that the reader of a value may become the writer of variables in it. In this paper we show how this model can be used to encode lambda calculus. Individual function applications can be explicitly encoded as lazy or not, as required. We then show how this encoding can be extended to cover functions which manipulate mutable variables, but with the underlying Core Aldwych implementation still using only immutable variables. The ordering of function applications then becomes an issue, with Core Aldwych able to model either the enforcement of an ordering or the retention of indeterminate ordering, which allows parallel execution
    • ā€¦
    corecore