861 research outputs found

    Preliminary design of a fuel cell - battery hybrid propulsion system for a small VTOL UAV

    Get PDF
    Master's thesis in Mechanical engineeringOver the past decade, utilization of unmanned aerial vehicles (UAVs) in military and commercial applications has increased significantly. The vertical take-off and landing (VTOL) UAV is appreciated for its easy launch and versatile operation capability, but the missions are limited due to low endurance. Hybrid fuel cell systems have the potential to increase the endurance significantly. Until now, the use of fuel cell systems in VTOL UAVs have been limited to demonstrations, but as new and lightweight fuel cell systems have been developed, the technology seems to have reached the maturity level needed to realize fuel cell powered VTOL UAVs for more widespread use. This paper considers the implementation of a hybrid fuel cell – battery system on an existing VTOL UAV with maximum take-off weight (MTOW) of 25 kg. The available technology for fuel cells and hydrogen storage are investigated with the aim of determining the best solution for this UAV, and a preliminary design of the entire propulsion system is done. The selection of different components is based on power estimation from momentum theory. The hydrogen storage is a customized spherical composite pressure vessel. A comparison between cylindrical and spherical pressure vessels are performed to justify the use of a spherical pressure vessel. The calculations are based on classical lamination theory. The results indicate that a spherical pressure vessel gives weight savings of 15 %. The estimated endurance of the proposed system is 3.2 hours at MTOW with a custom spherical pressure of 21 liters. This is a 7-fold improvement compared to the current installed batteries

    Design and Fabrication of Small Vertical-Take-Off-Landing Unmanned Aerial Vehicle

    Get PDF
    Modern UAVs available in the market have well-developed to cater to the countless field of application. UAVs have their own limitations in terms of flight range and manoeuvrability. The traditional fixed-wing UAVs can fly for long distance but require runways or wide-open spaces for take-off and landing. On the other hand, the more trending multirotor UAVs are extremely manoeuvrable but cannot be used for long-distance flights because of their slower speeds and relatively higher consumption of energy. This study proposed the implementation of hybrid VTOL UAV which has the manoeuvring advantage of a multirotor UAV while having the ability to travel fast to reach a further distance. The design methodology and fabrication method are discussed extensively which would be followed by a number of flight tests to prove the concept. The proposed UAV would be equipped with quadcopter motors and a horizontal thrust motor for vertical and horizontal flight modes respectively

    Validation of Quad Tail-sitter VTOL UAV Model in Fixed Wing Mode

    Get PDF
    Vertical take-off and landing (VTOL) is a type of unmanned aerial vehicle (UAV) that is growing rapidly because its ability to take off and land anywhere in tight spaces. One type of VTOL UAV, the tail-sitter, has the best efficiency. However, besides the efficiency offered, some challenges must still be overcome, including the complexity of combining the ability to hover like a helicopter and fly horizontally like a fixed-wing aircraft. This research has two contributions: in the form of how the analytical model is generated and the tools used (specifically for the small VTOL quad tail-sitter UAV) and how to utilize off-the-shelf components for UAV empirical modeling. This research focuses on increasing the speed and accuracy of the UAV VTOL control design in fixed-wing mode. The first step is to carry out analysis and simulation. The model is analytically obtained using OpenVSP in longitudinal and lateral modes. The next step is to realize this analytical model for both the aircraft and the controls. The third step is to measure the flight characteristics of the aircraft. Based on the data recorded during flights, an empirical model is made using system identification technique. The final step is to vali-date the analytical model with the empirical model. The results show that the characteristics of the analytical mode fulfill the specified requirements and are close to the empirical model. Thus, it can be concluded that the analytical model can be implemented directly, and consequently, the VTOL UAV design and development process has been shortened

    Infrastructural Requirements and Regulatory Challenges of a Sustainable Urban Air Mobility Ecosystem

    Full text link
    The United Nations has long put on the discussion agenda the sustainability challenges of ur- banization, which have both direct and indirect effects on future regulation strategies. Undoubtedly, most initiatives target better quality of life, improved access to services & goods and environment pro- tection. As commercial aerial urban transportation may become a feasible research goal in the near future, the connection possibilities between cities and regions scale up. It is expected that the growing number of vertical takeoff & landing vehicles used for passenger and goods transportation will change the infrastructure of the cities, and will have a significant effect on the cityscapes as well. In addition to the widely discussed regulatory and safety issues, the introduction of elevated traffic also raises environmental concerns, which influences the existing and required service and control infrastructure, and thus significantly affects sustainability. This paper provides narrated overview of the most common aspects of safety, licensing and regulations for passenger vertical takeoff & landing vehicles, and highlights the most important aspects of infrastructure planning, design and operation, which should be taken into account to maintain and efficiently operate this new way of transportation, leading to a sustainable urban air mobility ecosystem

    Baseline Assumptions and Future Research Areas for Urban Air Mobility Vehicles

    Get PDF
    NASA is developing Urban Air Mobility (UAM) concepts to (1) create first-generation reference vehicles that can be used for technology, system, and market studies, and (2) hypothesize second-generation UAM aircraft to determine high-payoff technology targets and future research areas that reach far beyond initial UAM vehicle capabilities. This report discusses the vehicle-level technology assumptions for NASAs UAM reference vehicles, and highlights future research areas for second-generation UAM aircraft that includes deflected slipstream concepts, low-noise rotors for edgewise flight, stacked rotors/propellers, ducted propellers, solid oxide fuel cells with liquefied natural gas, and improved turbo shaft and reciprocating engine technology. The report also highlights a transportation network-scale model that is being developed to understand the impact of these and other technologies on future UAM solutions
    corecore