2 research outputs found

    Gemini Telepresence Robot System Design: A Low-Cost Solution for Manipulation and Enhanced Perception of Telepresence Robots

    Get PDF
    Current telepresence robots are costly and only allow the operator to see the environment on a 2D screen and move around on a wheelbase. Thus, these telepresence devices are severely limited because of the high barrier of entry, and the operator is unable to manipulate objects or easily perceive the world in 3D. Therefore, to address these gaps in capabilities, Gemini, an open-source telepresence humanoid robot and interface station, was designed to grant the operator the ability to manipulate objects, expand the human interface by putting the user in the 3D world with the use of a virtual reality (VR) headset, and be low-cost. The simplistic, low-cost, and intuitive controls of Gemini promote early adoption by businesses and medical personnel to grant increased telepresence needs. In addition, this platform can be utilized by robotics enthusiasts and university researchers studying humanoid robotics or human-robot interaction. This paper presents an overview of the Gemini robot’s mechanical, electrical, and programmatic systems. Upon completion of this study, it was found that Gemini was able to grant the ability to manipulate objects, increase user perception with intuitive controls, in addition to costing approximately 30% less than commercial telepresence robots. Furthermore, the paper is concluded with remarks on future iterations of the project

    Full Issue

    Get PDF
    corecore