1,256 research outputs found

    Wireless Medical Sensor Networks: Design Requirements and Enabling Technologies

    Get PDF
    This article analyzes wireless communication protocols that could be used in healthcare environments (e.g., hospitals and small clinics) to transfer real-time medical information obtained from noninvasive sensors. For this purpose the features of the three currently most widely used protocols—namely, Bluetooth¼ (IEEE 802.15.1), ZigBee (IEEE 802.15.4), and Wi-Fi (IEEE 802.11)—are evaluated and compared. The important features under consideration include data bandwidth, frequency band, maximum transmission distance, encryption and authentication methods, power consumption, and current applications. In addition, an overview of network requirements with respect to medical sensor features, patient safety and patient data privacy, quality of service, and interoperability between other sensors is briefly presented. Sensor power consumption is also discussed because it is considered one of the main obstacles for wider adoption of wireless networks in medical applications. The outcome of this assessment will be a useful tool in the hands of biomedical engineering researchers. It will provide parameters to select the most effective combination of protocols to implement a specific wireless network of noninvasive medical sensors to monitor patients remotely in the hospital or at home

    A Data Fusion System to Study Synchronization in Social Activities

    Full text link
    As the world population gets older, the healthcare system must be adapted, among others by providing continuous health monitoring at home and in the city. The social activities have a significant role in everyone health status. Hence, this paper proposes a system to perform a data fusion of signals sampled on several subjects during social activities. This study implies the time synchronization of data coming from several sensors whether these are embedded on people or integrated in the environment. The data fusion is applied to several experiments including physical, cognitive and rest activities, with social aspects. The simultaneous and continuous analysis of four subjects cardiac activity and GPS coordinates provides a new way to distinguish different collaborative activities comparing the measurements between the subjects and along time.Comment: Healthcom 201

    Emotions in context: examining pervasive affective sensing systems, applications, and analyses

    Get PDF
    Pervasive sensing has opened up new opportunities for measuring our feelings and understanding our behavior by monitoring our affective states while mobile. This review paper surveys pervasive affect sensing by examining and considering three major elements of affective pervasive systems, namely; “sensing”, “analysis”, and “application”. Sensing investigates the different sensing modalities that are used in existing real-time affective applications, Analysis explores different approaches to emotion recognition and visualization based on different types of collected data, and Application investigates different leading areas of affective applications. For each of the three aspects, the paper includes an extensive survey of the literature and finally outlines some of challenges and future research opportunities of affective sensing in the context of pervasive computing

    Developing residential wireless sensor networks for ECG healthcare monitoring

    Get PDF
    Wireless technology development has increased rapidly due to it’s convenience and cost effectiveness compared to wired applications, particularly considering the advantages offered by Wireless Sensor Network (WSN) based applications. Such applications exist in several domains including healthcare, medical, industrial and home automation. In the present study, a home-based wireless ECG monitoring system using Zigbee technology is considered. Such systems can be useful for monitoring people in their own home as well as for periodic monitoring by physicians for appropriate healthcare, allowing people to live in their home for longer. Health monitoring systems can continuously monitor many physiological signals and offer further analysis and interpretation. The characteristics and drawbacks of these systems may affect the wearer’s mobility during monitoring the vital signs. Real-time monitoring systems record, measure, and monitor the heart electrical activity while maintaining the consumer’s comfort. Zigbee devices can offer low-power, small size, and a low-cost suitable solution for monitoring the ECG signal in the home, but such systems are often designed in isolation, with no consideration of existing home control networks and smart home solutions. The present study offers a state of the art review and then introduces the main concepts and contents of the wireless ECG monitoring systems. In addition, models of the ECG signal and the power consumption formulas are highlighted. Challenges and future perspectives are also reported. The paper concludes that such mass-market health monitoring systems will only be prevalent when implemented together with home environmental monitoring and control systems

    Heart Disease Detection Using Mobile Phone and Wireless Sensor Networks

    Get PDF
    Heart disease is a leading cause of death at this era of globalization. The paper describes a heart disease detection using mobile phone and wireless sensor networks. The emergence of wearable sensor and wireless mobile technologies enable to detect and monitor the changes in health parameters irrespective of places and time. In addition, a prototype is developed that capable of wirelessly monitoring and real-time diagnosis of patient to solve the critical issue that the patients‟ activities is restricted with the dangling wire and weight of the electrocardiogram machine. It will be much more convenience for the patient to do a self-test diagnosis by using a wireless heart monitoring device. This prototype aims to use low cost implementation and provides reliable heartbeat monitoring result. This kind of real-time assistive medical diagnosis system consists of pulse sensor

    A Mobile ECG Monitoring System with Context Collection

    Get PDF
    An objective of a health process is one where patients can stay healthy with the support of expert medical advice when they need it, at any location and any time. An associated aim would be the development of a system which places increased emphasis on preventative measures as a first point of contact with the patient. This research is a step along the road towards this type of preventative healthcare for cardiac patients. It seeks to develop a smart mobile ECG monitoring system that requests and records context information about what is happening around the subject when an arrhythmia event occurs. Context information about the subject’s activities of daily living will, it is hoped, provide an enriched data set for clinicians and so improve clinical decision making. As a first step towards a mobile cardiac wellness guidelines system, the focus of this work is to develop a system that can receive bio-signals wirelessly, analyzing and storing the bio-signal in a handheld device and can collect context information when there are significant changes in bio-signs. For this purpose the author will use a low cost development environment to program a state of the art wireless prototype on a handheld computer that detects and responds to changes in the heart rate as calculated form the interval between successive heart beats. Although the general approach take in this work could be applied to a wide range of bio-signals, the research will focus on ECG signals. The pieces of the system are, A wireless receiver, data collection and storage module An efficient real time ECG beat detection algorithm A rule based (Event-Condition-Action) interactive system A simple user interface, which can request additional information form the user. A selection of real-time ECG detection algorithms have been investigated and one algorithm was implemented in MATLAB [110] and then in Java [142] for this project. In order to collect ECG signals (and in principle any signals) the generalised data collection architecture has also been developed utilizing Java [142] and Bluetooth [5] technology. This architecture uses an implementation of the abstract factory pattern [91] to ensure that the communication channel can be changed conveniently. Another core part of this project is a “wellness” guideline based on Event-Condition-Action (E-C-A) [68] production rule approach that originated in active databases. The work also focuses on design of a guideline based expert system which an E-C-A based implementation will be fully event driven using the Java programming language. Based on the author’s experience and the literature review, some important issues in mobile healthcare along with the corresponding reasons, consequences and possible solutions will be presented

    Construction of a Smart Shirt with Medical Testing Purposes

    Get PDF
    When attempting to study physiological and psychological areas of the human body researchers may encounter difficulties with developing testing methodologies that are both broad enough to encompass a large focus group yet narrow enough to target the specific research topic. Preliminary research alludes to the benefit of low frequency vibration in regaining muscle function in stroke victims, compression systems for calming autistic patients, and movement monitoring for improving athletic performance. The goal of this project was to create a medical testing apparatus in the form of a smart shirt that easily allows medical professionals to conduct research in areas of developmental disorders, stroke muscle rehabilitation and athletic monitoring
    • 

    corecore