936 research outputs found

    Design of a Bio-Inspired Dynamical Vertical Climbing Robot

    Get PDF
    This paper reviews a template for dynamical climbing originating in biology, explores its stability properties in a numerical model, and presents empirical data from a physical prototype as evidence of the feasibility of adapting the dynamics of the template to robot that runs vertically upward. The recently proposed pendulous climbing model abstracts remarkable similarities in dynamic wall scaling behavior exhibited by radically different animal species. The present paper’s first contribution summarizes a numerical study of this model to hypothesize that these animals’ apparently wasteful commitments to lateral oscillations may be justified by a significant gain in the dynamical stability and, hence, the robustness of their resulting climbing capability. The paper’s second contribution documents the design and offers preliminary empirical data arising from a physical instantiation of this model. Notwithstanding the substantial differences between the proposed bio-inspired template and this physical manifestation, initial data suggest the mechanical climber may be capable of reproducing both the motions and ground reaction forces characteristic of dynamical climbing animals. Even without proper tuning, the robot’s steady state trajectories manifest a substantial exchange of kinetic and potential energy, resulting in vertical speeds of 0.30 m/s (0.75 bl/s) and claiming its place as the first bio-inspired dynamical legged climbing platform

    A Self-Exciting Controller for High-Speed Vertical Running

    Get PDF
    Traditional legged runners and climbers have relied heavily on gait generators in the form of internal clocks or reference trajectories. In contrast, here we present physical experiments with a fast, dynamical, vertical wall climbing robot accompanying a stability proof for the controller that generates it without any need for an additional internal clock or reference signal. Specifically, we show that this “self-exciting” controller does indeed generate an “almost” globally asymptotically stable limit cycle: the attractor basin is as large as topologically possible and includes all the state space excluding a set with empty interior. We offer an empirical comparison of the resulting climbing behavior to that achieved by a more conventional clock-generated gait trajectory tracker. The new, self-exciting gait generator exhibits a marked improvement in vertical climbing speed, in fact setting a new benchmark in dynamic climbing by achieving a vertical speed of 1.5 body lengths per second. For more information: Kod*La

    Sprawl Angle in Simplified Models of Vertical Climbing: Implications for Robots and Roaches

    Get PDF
    Empirical data taken from fast climbing sprawled posture animals reveals the presence of strong lateral forces with significant pendulous swaying of the mass center trajectory in a manner captured by a recently proposed dynamical template. In this simulation study we explore the potential benefits of pendulous dynamical climbing in animals and in robots by examining the stability and power advantages of variously more and less sprawled limb morphologies when driven by conventional motors in contrast with animal-like muscles. For open loop models of gait generation inspired by the neural-deprived regimes of high stride-frequency animal climbing, our results corroborate earlier hypotheses that sprawled posture may be required for stability. For quadratic-in- velocity power output actuation models typical of commercially available electromechanical actuators, our results suggest the new hypothesis that sprawled posture may confer significant energetic advantage. In notable contrast, muscle-powered climbers do not experience an energetic benefit from sprawled posture due to their sufficiently distinct actuator characteristics and operating regimes. These results suggest that the potentially significant benefits of sprawled posture climbing may be distinctly different depending upon the details of the climber\u27s sensorimotor endowment. They offer a cautionary instance against mere copying of biology by engineers or rote study of physical models by biologists through this reminder of how even simple questions addressed by simple models can yield nuanced answers that only begin to hint at the complexity of biological designs and behaviors

    A Bioinspired Dynamical Vertical Climbing Robot

    Get PDF
    This paper describes the inspiration, design, analysis, implementation of and experimentation with the first dynamical vertical climbing robot. Biologists have proposed a pendulous climbing model that abstracts remarkable similarities in dynamic wall scaling behavior exhibited by radically different animal species. We study numerically a version of that pendulous climbing template dynamically re-scaled for applicability to utilitarian payloads with conventional electronics and actuation. This simulation study reveals that the incorporation of passive compliance can compensate for an artifact’s poorer power density and scale disadvantages relative to biology. However the introduction of additional dynamical elements raises new concerns about stability regarding both the power stroke and limb coordination that we allay via mathematical analysis of further simplified models. Combining these numerical and analytical insights into a series of design prototypes, we document the correspondence of the various models to the variously scaled platforms and report that our approximately two kilogram platform climbs dynamically at vertical speeds up to 1.5 bodylengths per second. In particular, the final 2.6 kg final prototype climbs at an average steady state speed of 0.66 m/s against gravity on a carpeted vertical wall, in rough agreement with our various models’ predictions

    Bio-Inspired Adhesive Footpad for Legged Robot Climbing under Reduced Gravity: Multiple Toes Facilitate Stable Attachment

    Get PDF
    This paper presents the design of a legged robot with gecko-mimicking mechanism and mushroom-shaped adhesive microstructure (MSAMS) that can climb surfaces under reduced gravity. The design principle, adhesion performance and roles of different toes of footpad are explored and discussed in this paper. The effect of the preload velocity, peeling velocity and thickness of backing layering on the reliability of the robot are investigated. Results show that pull-force is independent of preload velocity, while the peeling force is relying on peeling velocity, and the peel strength increased with the increasing thickness of the backing layer. The climbing experiments show that the robot can climb under mimic zero gravity by using multiple toes facilitating adhesion. The robot with new type of footpads also provides a good platform for testing different adhesive materials for the future space applications

    Convergence of Bayesian Histogram Filters for Location Estimation

    Get PDF
    We prove convergence of an approximate Bayesian estimator for the (scalar) location estimation problem by recourse to a histogram approximant. We exploit its tractability to present a simple strategy for managing the tradeoff between accuracy and complexity through the cardinality of the underlying partition. Our theoretical results provide explicit (conservative) sufficient conditions under which convergence is guaranteed. Numerical simulations reveal certain extreme cases in which the conditions may be tight, and suggest that this procedure has performance and computational efficiency favorably comparable to particle filters, while affording the aforementioned analytical benefits. We posit that more sophisticated algorithms can make such piecewise-constant representations similarly feasible for very high-dimensional problems. For more information: Kod*La

    Motor Sizing for Legged Robots Using Dynamic Task Specification

    Get PDF
    We explore an approach to incorporating task and motor thermal dynamics in the selection of actuators for legged robots, using both analytical and simulation methods. We develop a motor model with a thermal component and apply it to a vertical climbing task; in the process, we optimally choose gear ratio and therefore eliminate it as a design parameter. This approach permits an analytical proof that continuous operation yields superior thermal performance to intermittent operation. We compare the results of motor sizing using our proposed method with more conventional techniques such as using the continuously permissible current specification. Our simulations are run across a database of commercially available motors, and we envision that our results might be of immediate use to robot designers for motor as well as gearbox selection

    Climbing and Walking Robots

    Get PDF
    With the advancement of technology, new exciting approaches enable us to render mobile robotic systems more versatile, robust and cost-efficient. Some researchers combine climbing and walking techniques with a modular approach, a reconfigurable approach, or a swarm approach to realize novel prototypes as flexible mobile robotic platforms featuring all necessary locomotion capabilities. The purpose of this book is to provide an overview of the latest wide-range achievements in climbing and walking robotic technology to researchers, scientists, and engineers throughout the world. Different aspects including control simulation, locomotion realization, methodology, and system integration are presented from the scientific and from the technical point of view. This book consists of two main parts, one dealing with walking robots, the second with climbing robots. The content is also grouped by theoretical research and applicative realization. Every chapter offers a considerable amount of interesting and useful information
    • …
    corecore