2,813 research outputs found

    Dynamic mode decomposition of the metachronal paddling wake

    Get PDF
    Metachronal paddling is a drag-based propulsion strategy observed in many aquatic arthropods in which a series of paddling appendages are stroked sequentially to form a traveling wave in the same direction as animal motion. Metachronal paddling’s relatively high force production makes these organisms highly agile, an attractive potential for bio-inspired autonomous underwater vehicles that is complicated by the lack of reduced order flow structure and dynamics models applicable to vehicle actuation and control design. This study uses particle image velocimetry to quantify the wake of a robot performing metachronal paddling. Then, dynamic mode decomposition is used to identify the frequency modes of the wake, which are used to reconstruct a reduced order model at Reynolds numbers of 32, 160, and 516. The results show that the kinetic energy in the metachronal paddling wake is well modeled using a superposition of the first 5 dynamic modes, and that there is typically little change in the reconstruction error when the reconstruction is performed with a higher number of dynamic modes. The low order paddling models identified using this method can be used to identify the physical mechanisms that differentiate metachronal paddling from synchronous paddling, and to develop control strategies to modulate these motions in bio-inspired autonomous underwater vehicles.Mechanical and Aerospace Engineerin

    Towards Odor-Sensitive Mobile Robots

    Get PDF
    J. Monroy, J. Gonzalez-Jimenez, "Towards Odor-Sensitive Mobile Robots", Electronic Nose Technologies and Advances in Machine Olfaction, IGI Global, pp. 244--263, 2018, doi:10.4018/978-1-5225-3862-2.ch012 Versión preprint, con permiso del editorOut of all the components of a mobile robot, its sensorial system is undoubtedly among the most critical ones when operating in real environments. Until now, these sensorial systems mostly relied on range sensors (laser scanner, sonar, active triangulation) and cameras. While electronic noses have barely been employed, they can provide a complementary sensory information, vital for some applications, as with humans. This chapter analyzes the motivation of providing a robot with gas-sensing capabilities and also reviews some of the hurdles that are preventing smell from achieving the importance of other sensing modalities in robotics. The achievements made so far are reviewed to illustrate the current status on the three main fields within robotics olfaction: the classification of volatile substances, the spatial estimation of the gas dispersion from sparse measurements, and the localization of the gas source within a known environment

    Soft Robots for Ocean Exploration and Offshore Operations: A Perspective

    Get PDF
    The ocean and human activities related to the sea are under increasing pressure due to climate change, widespread pollution, and growth of the offshore energy sector. Data, in under-sampled regions of the ocean and in the offshore patches where the industrial expansion is taking place, are fundamental to manage successfully a sustainable development and to mitigate climate change. Existing technology cannot cope with the vast and harsh environments that need monitoring and sampling the most. The limiting factors are, among others, the spatial scales of the physical domain, the high pressure, and the strong hydrodynamic perturbations, which require vehicles with a combination of persistent autonomy, augmented efficiency, extreme robustness, and advanced control. In light of the most recent developments in soft robotics technologies, we propose that the use of soft robots may aid in addressing the challenges posed by abyssal and wave-dominated environments. Nevertheless, soft robots also allow for fast and low-cost manufacturing, presenting a new potential problem: marine pollution from ubiquitous soft sampling devices. In this study, the technological and scientific gaps are widely discussed, as they represent the driving factors for the development of soft robotics. Offshore industry supports increasing energy demand and the employment of robots on marine assets is growing. Such expansion needs to be sustained by the knowledge of the oceanic environment, where large remote areas are yet to be explored and adequately sampled. We offer our perspective on the development of sustainable soft systems, indicating the characteristics of the existing soft robots that promote underwater maneuverability, locomotion, and sampling. This perspective encourages an interdisciplinary approach to the design of aquatic soft robots and invites a discussion about the industrial and oceanographic needs that call for their application

    Overview effect of biodiesel storage on properties and characteristics

    Get PDF
    Abstract. Biofuels based on vegetable oils offer the advantage being a sustainable and environmen-tally attractive alternative to conventional petroleum based fuel. The key issue in using vegetable oil-based fuels is oxidation stability, stoichiometric point, bio-fuel composition, antioxidants on the degradation and much oxygen with comparing to diesel gas oil. This provides a critical review of current understanding of main factor in storage method which affecting the biodiesel properties and characteristics. In the quest for fulfill the industry specifications standard; the fuel should be stored in a clean, dry and dark environment. Water and sediment contamination are basically housekeep-ing issues for biodiesel. Degradation by oxidation yields products that may compromise fuel proper-ties, impair fuel quality and engine performance. The effect of storage method on the fuel properties and burning process in biodiesel fuel combustion will strongly affects the exhaust emissions

    Bio-inspired Robotic Fish with Multiple Fins

    Get PDF

    Hydrodynamics of Biomimetic Marine Propulsion and Trends in Computational Simulations

    Get PDF
    [Abstract] The aim of the present paper is to provide the state of the works in the field of hydrodynamics and computational simulations to analyze biomimetic marine propulsors. Over the last years, many researchers postulated that some fish movements are more efficient and maneuverable than traditional rotary propellers, and the most relevant marine propulsors which mimic fishes are shown in the present work. Taking into account the complexity and cost of some experimental setups, numerical models offer an efficient, cheap, and fast alternative tool to analyze biomimetic marine propulsors. Besides, numerical models provide information that cannot be obtained using experimental techniques. Since the literature about trends in computational simulations is still scarce, this paper also recalls the hydrodynamics of the swimming modes occurring in fish and summarizes the more relevant lines of investigation of computational models

    Adaptation of sensor morphology: an integrative view of perception from biologically inspired robotics perspective

    Get PDF
    Sensor morphology, the morphology of a sensing mechanism which plays a role of shaping the desired response from physical stimuli from surroundings to generate signals usable as sensory information, is one of the key common aspects of sensing processes. This paper presents a structured review of researches on bioinspired sensor morphology implemented in robotic systems, and discusses the fundamental design principles. Based on literature review, we propose two key arguments: first, owing to its synthetic nature, biologically inspired robotics approach is a unique and powerful methodology to understand the role of sensor morphology and how it can evolve and adapt to its task and environment. Second, a consideration of an integrative view of perception by looking into multidisciplinary and overarching mechanisms of sensor morphology adaptation across biology and engineering enables us to extract relevant design principles that are important to extend our understanding of the unfinished concepts in sensing and perceptionThis study was supported by the European Commission with the RoboSoft CA (A Coordination Action for Soft Robotics, contract #619319). SGN was supported by School of Engineering seed funding (2016), Malaysia Campus, Monash University
    • …
    corecore