39 research outputs found

    High-Frequency Bidirectional DC-DC Converters for Electric Vehicle Applications

    Get PDF
    As a part of an electric vehicle (EV) onboard charger, a highly efficient, highly compact, lightweight and isolated DC-DC converter is required to enable battery charging through voltage/current regulation. In addition, a bidirectional on-board charger requires the DC-DC converter to achieve bidirectional power flow: grid-to-vehicle (G2V) and vehicle-to-grid (V2G). In this work, performance characteristics of two popular DC-DC topologies, CLLC and dual active bridge (DAB), are analyzed and compared for EV charging applications. The CLLC topology is selected due to its wide gain range, soft-switching capability over the full load range, and potential for a smaller and more compact size. This dissertation outlines the feasibility, analyses, and performance of a CLLC converter investigated and designed to operate at 1 MHz and 3.3 kW for EV onboard chargers. The proposed design utilizes the emerging wide bandgap (WBG) gallium nitride (GaN) based MOSFETs to enable high-frequency switching without sacrificing the conversion efficiency. One of the major challenges in MHz-level power converter design is to reduce the parasitic components of printed circuit boards (PCBs), which can cause faulty triggering of switches leading to circuit failure. An innovative gate driver is designed and optimized to minimize the effect of parasitic components, which includes a +6/-3 V driving logic enhancing the noise immunity of the system. Another challenge is the efficient design of magnetic components, which requires minimizing the impacts of skin and proximity effects on the transformer winding to reduce the conduction loss at high frequencies. A novel MHz-level planar transformer with adjustable leakage inductance is modeled, designed, and developed for the proposed converter. A comprehensive system level power loss analysis is completed and confirmed with the help of experimental results. This is the first prototype of a 3.3 kW power bidirectional CLLC converter operating at 1 MHz operating frequency with 400-450 V input voltage range, 250-420 V output voltage range. The experiment results have successfully validated the feasibility of the proposed converter conforming to the analysis carried out during the design phase. With an appropriate design of driving circuit and control signal, the prototype achieves a peak efficiency of 97.2% with 9.22 W/cm3 (151.1 W/in3) power density which is twice more power dense than other state-of-the-art isolated DC-DC converters

    Optimization of Extended Phase-Shift Control for Full-Bridge CLLC Resonant Converter with Improved Light-Load Efficiency

    Get PDF

    An Integrated Single-phase On-board Charger

    Get PDF
    With the growing demand for transportation electrification, plug-in electric vehicles (PEVs), and plug-in hybrid electric vehicles (PHEVs), cumulatively called electric vehicles (EVs) are drawing more and more attention. The on-board charger (OBC), which is the power electronics interface between the power grid and the high voltage traction battery, is an important part for charging EVs. Besides the OBC, every EV is equipped with another separate power unit called the auxiliary power module (APM) to charge the low voltage (LV) auxiliary battery, which supplies all the electronics on car including audio, air conditioner, lights and controllers. The main target of this work is a novel way to integrate both units together to achieve a charger design that is not only capable of bi-directional operation with high efficiency, but also higher gravimetric and volumetric power density, as compared with those of the existing OBCs and APMs combined. To achieve this target, following contributions are made: (i) a three-port integrated DC/DC converter, which combines OBC and APM together through an innovative integration method; (ii) an innovative zero-crossing current spike compensation for interleaved totem pole power factor correction (PFC) and (iii) a new phase-shift based control strategy to achieve a regulated power flow management with minimum circulating losses

    Design of a 7.5 kW Dual Active Bridge Converter in 650 V GaN Technology for Charging Applications

    Get PDF
    High-voltage GaN switches offer low conduction and commutation losses compared with their Si counterparts, enabling the development of high-efficiency switching-mode DC-DC converters with increased switching frequency, faster dynamics, and more compact dimensions. Nonetheless, the potential of GaN switches can be fully exploited only by means of accurate simulations, optimal switch driving, suitable converter topology, accurate component selection, PCB layout optimization, and fast digital converter control. This paper describes the detailed design, simulation, and implementation of an air-cooled, 7.5 kW, dual active bridge converter exploiting commercial 650 V GaN switches, a compact planar transformer, and low ESL/ESR metal film capacitors. The isolated bidirectional converter operates at a 200 kHz switching frequency, with an output voltage range of 200-500 V at nominal 400 V input voltage, and a maximum output current of 28 A, with a wide full-power ZVS region. The overall efficiency at full power is 98.2%. This converter was developed in particular for battery charging applications, when bidirectional power flow is required

    Extension of Zero Voltage Switching Capability for CLLC Resonant Converter

    Get PDF
    TheCLLC resonant converter has been widely used to obtaina high power conversion efficiency with sinusoidal current waveforms and a soft switching capability. However, it has a limited voltage gain range according to the input voltage variation. The current-fed structure canbe one solution to extend the voltage gain range for the wide input voltage variation, butit has a limited zero voltage switching (ZVS) range. In this paper, the current-fed CLLC resonant converter with additional inductance is proposed to extend the ZVS range. The operational principle is analyzed to design the additional inductance for obtaining the extended ZVS range. The design methodology of the additional inductance is proposed to maximize the ZVS capability for the entire load range. The performance of the proposed method is verified with a 20 W prototype converter

    A GALLIUM NITRIDE INTEGRATED ONBOARD CHARGER

    Get PDF
    Compared to Silicon metal–oxide–semiconductor field-effect transistors (MOSFETs), Gallium Nitride (GaN) devices have a significant reduction in gate charge, output capacitance, and zero reverse recovery charge, enabling higher switching frequency operation and efficient power conversion. GaN devices are gaining momentum in power electronic systems such as electric vehicle (EV) charging system, due to their promises to significantly enhance the power density and efficiency. In this dissertation, a GaN-based integrated onboard charger (OBC) and auxiliary power module (APM) is proposed for EVs to ensure high efficiency, high frequency, high power density, and capability of bidirectional operation. The high switching frequency operation enabled by the GaN devices and the integration of OBC and APM bring many unique challenges, which are addressed in this dissertation. An important challenge is the optimal design of high-frequency magnetics for a high-frequency GaN-based power electronic interface. Another challenge is to achieve power flow management among three active ports while minimizing the circulating power. Furthermore, the impact of circuit layout parasitics could significantly deteriorate the system interface, due to the sensitivity of GaN device switching characteristics. In this work, the aforementioned challenges have been addressed. First, a comprehensive analysis of the front-end AC-DC power factor correction stage is presented, covering a detailed magnetic modeling technique to address the high-frequency magnetics challenge. Second, the modeling and control of a three-port DC-DC converter, interfacing the AC-DC stage, high-voltage traction battery and low-voltage battery, are discussed to address the power flow challenge. Advanced control methodologies are developed to realize power flow management while maintaining minimum circulating power and soft switching. Furthermore, a new three-winding high-frequency transformer design with improved power density and efficiency is achieved using a genetic-algorithm-based optimization approach. Finally, a GaN-based integrated charger prototype is developed to validate the proposed theoretical hypothesis. The experimental results showed that the GaN-based charging system has the capability of achieving simultaneous charging (G2B) of both HV and LV batteries with a peak efficiency of 95%

    PCB Layer Optimization of Planar Medium Frequency Transformer for On-Board EV Chargers

    Get PDF
    Planar medium frequency transformer (MFT) is a promising solution for on-board electric vehicle (EV) chargers, to achieve high power density and high efficiency. The trend towards higher power densities and higher efficiencies exposes a number of limitations on conventional litz wire transformers, especially for increasing the current density. Litz wire current density is limited by the temperature, due to poor thermal management capabilities. PCBs, however, have better thermal management capabilities, which allows for higher current densities. This paper optimizes planar MFT windings focusing on maximizing current density and the simplicity of the implementation. The losses, power density and thermal constraints are investigated and a pareto-front is created based on optimal solutions. High efficiency and power densities are achieved from 2D/3D FEM simulations. A solution within thermal constraints is selected and a prototype is built based on similar ratings. Tests with different current densities are carried out on the prototype and the temperatures are compared. The results verify that planar MFT with high current densities are feasible solutions for high efficiency and high power density MFTs

    Multi-objective optimization of power electronic converters

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    corecore