3,789 research outputs found

    Monitoring and Control Framework for Advanced Power Plant Systems Using Artificial Intelligence Techniques

    Get PDF
    This dissertation presents the design, development, and simulation testing of a monitoring and control framework for dynamic systems using artificial intelligence techniques. A comprehensive monitoring and control system capable of detecting, identifying, evaluating, and accommodating various subsystem failures and upset conditions is presented. The system is developed by synergistically merging concepts inspired from the biological immune system with evolutionary optimization algorithms and adaptive control techniques.;The proposed methodology provides the tools for addressing the complexity and multi-dimensionality of the modern power plants in a comprehensive and integrated manner that classical approaches cannot achieve. Current approaches typically address abnormal condition (AC) detection of isolated subsystems of low complexity, affected by specific AC involving few features with limited identification capability. They do not attempt AC evaluation and mostly rely on control system robustness for accommodation. Addressing the problem of power plant monitoring and control under AC at this level of completeness has not yet been attempted.;Within the proposed framework, a novel algorithm, namely the partition of the universe, was developed for building the artificial immune system self. As compared to the clustering approach, the proposed approach is less computationally intensive and facilitates the use of full-dimensional self for system AC detection, identification, and evaluation. The approach is implemented in conjunction with a modified and improved dendritic cell algorithm. It allows for identifying the failed subsystems without previous training and is extended to address the AC evaluation using a novel approach.;The adaptive control laws are designed to augment the performance and robustness of baseline control laws under normal and abnormal operating conditions. Artificial neural network-based and artificial immune system-based approaches are developed and investigated for an advanced power plant through numerical simulation.;This dissertation also presents the development of an interactive computational environment for the optimization of power plant control system using evolutionary techniques with immunity-inspired enhancements. Several algorithms mimicking mechanisms of the immune system of superior organisms, such as cloning, affinity-based selection, seeding, and vaccination are used. These algorithms are expected to enhance the computational effectiveness, improve convergence, and be more efficient in handling multiple local extrema, through an adequate balance between exploration and exploitation.;The monitoring and control framework formulated in this dissertation applies to a wide range of technical problems. The proposed methodology is demonstrated with promising results using a high validity DynsimRTM model of the acid gas removal unit that is part of the integrated gasification combined cycle power plant available at West Virginia University AVESTAR Center. The obtained results show that the proposed system is an efficient and valuable technique to be applied to a real world application. The implementation of this methodology can potentially have significant impacts on the operational safety of many complex systems

    An overview on structural health monitoring: From the current state-of-the-art to new bio-inspired sensing paradigms

    Get PDF
    In the last decades, the field of structural health monitoring (SHM) has grown exponentially. Yet, several technical constraints persist, which are preventing full realization of its potential. To upgrade current state-of-the-art technologies, researchers have started to look at nature’s creations giving rise to a new field called ‘biomimetics’, which operates across the border between living and non-living systems. The highly optimised and time-tested performance of biological assemblies keeps on inspiring the development of bio-inspired artificial counterparts that can potentially outperform conventional systems. After a critical appraisal on the current status of SHM, this paper presents a review of selected works related to neural, cochlea and immune-inspired algorithms implemented in the field of SHM, including a brief survey of the advancements of bio-inspired sensor technology for the purpose of SHM. In parallel to this engineering progress, a more in-depth understanding of the most suitable biological patterns to be transferred into multimodal SHM systems is fundamental to foster new scientific breakthroughs. Hence, grounded in the dissection of three selected human biological systems, a framework for new bio-inspired sensing paradigms aimed at guiding the identification of tailored attributes to transplant from nature to SHM is outlined.info:eu-repo/semantics/acceptedVersio

    Application of immune algorithm in multiple sensor system.

    Get PDF

    Reliable system design with a high degree of diagnostic procedures for embedded systems

    Get PDF
    Maintenance starts with reliable diagnostics. Programming Logic Controllers (PLCs) are often equipped with a high degree of diagnostic procedures in order to ensure that the processing unit is functioning correctly. It is vital to verify that the system with its programme is still within a 'healthy' state, otherwise a safety function is called and the system is brought into a safe state, or if possible, defect and malfunctioning components are exchanged during operation and the process can continue without shutting down the system. However, when it comes to smaller devices such as intelligent sensors, embedded controller devices with the functionality of an e.g. PID (Proportional-Integral-Derivative), predictive controller, filter or analytical algorithm, which is embedded into a FPGA or micro-controller then diagnostics and verification methods are often not considered in the way they should be. For example, if an intelligent sensor system is not able to diagnose that the sensor-head is malfunctioning, but the sensor-head still provides some data, then the smart algorithm bases its calculation on wrong data, which can cause a dangerous situation. This paper investigates and shows recent results to combine diagnostic methods for small scale devices. Several safety-related structures are considered with a high degree of diagnostic coverage. The paper presents relevant procedures and structures to increase the reliability of small devices without utilising a full scale microcontroller system

    An Online Adaptive Machine Learning Framework for Autonomous Fault Detection

    Get PDF
    The increasing complexity and autonomy of modern systems, particularly in the aerospace industry, demand robust and adaptive fault detection and health management solutions. The development of a data-driven fault detection system that can adapt to varying conditions and system changes is critical to the performance, safety, and reliability of these systems. This dissertation presents a novel fault detection approach based on the integration of the artificial immune system (AIS) paradigm and Online Support Vector Machines (OSVM). Together, these algorithms create the Artificial Immune System augemented Online Support Vector Machine (AISOSVM). The AISOSVM framework combines the strengths of the AIS and OSVM to create a fault detection system that can effectively identify faults in complex systems while maintaining adaptability. The framework is designed using Model-Based Systems Engineering (MBSE) principles, employing the Capella tool and the Arcadia methodology to develop a structured, integrated approach for the design and deployment of the data-driven fault detection system. A key contribution of this research is the development of a Clonal Selection Algorithm that optimizes the OSVM hyperparameters and the V-Detector algorithm parameters, resulting in a more effective fault detection solution. The integration of the AIS in the training process enables the generation of synthetic abnormal data, mitigating the need for engineers to gather large amounts of failure data, which can be impractical. The AISOSVM also incorporates incremental learning and decremental unlearning for the Online Support Vector Machine, allowing the system to adapt online using lightweight computational processes. This capability significantly improves the efficiency of fault detection systems, eliminating the need for offline retraining and redeployment. Reinforcement Learning (RL) is proposed as a promising future direction for the AISOSVM, as it can help autonomously adapt the system performance in near real-time, further mitigating the need for acquiring large amounts of system data for training, and improving the efficiency of the adaptation process by intelligently selecting the best samples to learn from. The AISOSVM framework was applied to real-world scenarios and platform models, demonstrating its effectiveness and adaptability in various use cases. The combination of the AIS and OSVM, along with the online learning and RL integration, provides a robust and adaptive solution for fault detection and health management in complex autonomous systems. This dissertation presents a significant contribution to the field of fault detection and health management by integrating the artificial immune system paradigm with Online Support Vector Machines, developing a structured, integrated approach for designing and deploying data-driven fault detection systems, and implementing reinforcement learning for online, autonomous adaptation of fault management systems. The AISOSVM framework offers a promising solution to address the challenges of fault detection in complex, autonomous systems, with potential applications in a wide range of industries beyond aerospace

    SABRE: A bio-inspired fault-tolerant electronic architecture

    Get PDF
    As electronic devices become increasingly complex, ensuring their reliable, fault-free operation is becoming correspondingly more challenging. It can be observed that, in spite of their complexity, biological systems are highly reliable and fault tolerant. Hence, we are motivated to take inspiration for biological systems in the design of electronic ones. In SABRE (self-healing cellular architectures for biologically inspired highly reliable electronic systems), we have designed a bio-inspired fault-tolerant hierarchical architecture for this purpose. As in biology, the foundation for the whole system is cellular in nature, with each cell able to detect faults in its operation and trigger intra-cellular or extra-cellular repair as required. At the next level in the hierarchy, arrays of cells are configured and controlled as function units in a transport triggered architecture (TTA), which is able to perform partial-dynamic reconfiguration to rectify problems that cannot be solved at the cellular level. Each TTA is, in turn, part of a larger multi-processor system which employs coarser grain reconfiguration to tolerate faults that cause a processor to fail. In this paper, we describe the details of operation of each layer of the SABRE hierarchy, and how these layers interact to provide a high systemic level of fault tolerance. © 2013 IOP Publishing Ltd
    • …
    corecore