208 research outputs found

    Convolutional compressed sensing using deterministic sequences

    Get PDF
    This is the author's accepted manuscript (with working title "Semi-universal convolutional compressed sensing using (nearly) perfect sequences"). The final published article is available from the link below. Copyright @ 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.In this paper, a new class of orthogonal circulant matrices built from deterministic sequences is proposed for convolution-based compressed sensing (CS). In contrast to random convolution, the coefficients of the underlying filter are given by the discrete Fourier transform of a deterministic sequence with good autocorrelation. Both uniform recovery and non-uniform recovery of sparse signals are investigated, based on the coherence parameter of the proposed sensing matrices. Many examples of the sequences are investigated, particularly the Frank-Zadoff-Chu (FZC) sequence, the m-sequence and the Golay sequence. A salient feature of the proposed sensing matrices is that they can not only handle sparse signals in the time domain, but also those in the frequency and/or or discrete-cosine transform (DCT) domain

    Cross Z-Complementary Pairs for Optimal Training in Spatial Modulation Over Frequency Selective Channels

    Get PDF
    The contributions of this article are twofold: Firstly, we introduce a novel class of sequence pairs, called “cross Z-complementary pairs (CZCPs),” each displaying zero-correlation zone (ZCZ) properties for both their aperiodic autocorrelation sums and crosscorrelation sums. Systematic constructions of perfect CZCPs based on selected Golay complementary pairs (GCPs) are presented. Secondly, we point out that CZCPs can be utilized as a key component in designing training sequences for broadband spatial modulation (SM) systems. We show that our proposed SM training sequences derived from CZCPs lead to optimal channel estimation performance over frequency-selective channels

    Near-Optimal Zero Correlation Zone Sequence Sets from Paraunitary Matrices

    Get PDF
    Zero correlation zone (ZCZ) sequence sets play an important role in interference-free quasi-synchronous code-division multiple access communications. In this paper, for the first time, we investigate the periodic correlation properties of polyphase sequences obtained from paraunitary (PU) matrices, which shows the inherent relationship between PU matrix and ZCZ sequence sets. Our investigation suggests that any arbitrary PU matrix can produce ZCZ sequence sets by controlling its expanded form. The key idea is to impose certain restrictions on the expanded forms of the PU matrices to enable precise computation of the periodic correlation functions of the constructed sequences. We show that our proposed construction leads to near-optimal ZCZ sequence sets with regard to the ZCZ set size upper bound
    corecore