48 research outputs found

    A Wireless Sensor Network Based Personnel Positioning Scheme in Coal Mines with Blind Areas

    Get PDF
    This paper proposes a novel personnel positioning scheme for a tunnel network with blind areas, which compared with most existing schemes offers both low-cost and high-precision. Based on the data models of tunnel networks, measurement networks and mobile miners, the global positioning method is divided into four steps: (1) calculate the real time personnel location in local areas using a location engine, and send it to the upper computer through the gateway; (2) correct any localization errors resulting from the underground tunnel environmental interference; (3) determine the global three-dimensional position by coordinate transformation; (4) estimate the personnel locations in the blind areas. A prototype system constructed to verify the positioning performance shows that the proposed positioning system has good reliability, scalability, and positioning performance. In particular, the static localization error of the positioning system is less than 2.4 m in the underground tunnel environment and the moving estimation error is below 4.5 m in the corridor environment. The system was operated continuously over three months without any failures

    SMART SENSOR AND TRACKING SYSTEM FOR UNDERGROUND MINING

    Get PDF
    The thesis predominantly discusses a smart sensor and tracking system for under- ground mining, as developed by the author. The tracking system is developed by two steps, the rst of which involves nding an e cient way to measure the distance, and the second of which involves localizing the positions of each miner in real-time. For the rst step, a Received Signal Strength Indicator (RSSI) is used to measure the distance between two points by indicating the amount of energy lost during the transmission. Due to environmental and human factors, errors exist when using RSSI to measure distance. Three methods are taken to reduce the error: Gaussian distribution, statistical average and preset points. It can be observed that the average error between actual distance and measured distance is only 0.1145 meters using the proposed model. In regards to the localization, the "3-point localization method" is considered rst. With the proposed method, the result of the localization is improved by 0.6 meters, as compared to the "2-point localization method". The transmission method for the project is then discussed. After comparing sev- eral transmission protocols in the market, ZigBee was chosen for the signal trans- mission. With the Zigbee protocol, up to 65000 nodes can be connected, which are suitable for many miners using the system at the same time. The power supply for the ZigBee protocol is only 1mW for each unit, thus potentially saving a great amount of energy during the transmission. To render the tracking system more powerful, two smart sensors are installed: an MQ-2 sensor and a temperature sensor. The MQ-2 sensor is used to detect the harmful gas and smoke. In the event that the sensor's detected value is beyond the threshold, it will provide a warning for the supervisor on the ground

    Anchor-Free Localization Method for Mobile Targets in Coal Mine Wireless Sensor Networks

    Get PDF
    Severe natural conditions and complex terrain make it difficult to apply precise localization in underground mines. In this paper, an anchor-free localization method for mobile targets is proposed based on non-metric multi-dimensional scaling (Multi-dimensional Scaling: MDS) and rank sequence. Firstly, a coal mine wireless sensor network is constructed in underground mines based on the ZigBee technology. Then a non-metric MDS algorithm is imported to estimate the reference nodes’ location. Finally, an improved sequence-based localization algorithm is presented to complete precise localization for mobile targets. The proposed method is tested through simulations with 100 nodes, outdoor experiments with 15 ZigBee physical nodes, and the experiments in the mine gas explosion laboratory with 12 ZigBee nodes. Experimental results show that our method has better localization accuracy and is more robust in underground mines

    Strength, water absorption and thermal comfort of mortar bricks containing crushed ceramic waste

    Get PDF
    This present study investigated the crushed ceramic waste utilisation as sand replacement in solid mortar bricks. The percentage of crushed ceramic waste used were 0% (CW0), 10% (CW10), 20% (CW20) and 30% (CW30) from the total weight of sand. The dimension prescribed of mortar bricks are 215 mm x 102.5 mm x 65 mm as followed accordance to MS 2281:2010 and BS EN 771-1:2011+A1:2015. Four (4) tests were conducted on mortar bricks namely crushing strength, water absorption, compressive strength of masonry units and thermal comfort. The incorporation of ceramic waste in all designated mortar bricks showed the increment of crushing strength between 23% and 46% at 28 days of curing and decrement water absorption between 34% and 44% was recorded corresponding to control mortar bricks. The prism test of masonry units consists of mortar bricks containing ceramic waste indicated the high increment of compressive strength at about 200% as compared to mortar brick without ceramic waste. The thermal comfort test of ceramic mortar bricks were also showed the good insulation with low interior temperature. Therefore, the ceramic waste can be utilised as a material replacement to fine aggregate in mortar brick productions due to significant outcomes performed

    DEVELOPMENT OF AN AUTONOMOUS NAVIGATION SYSTEM FOR THE SHUTTLE CAR IN UNDERGROUND ROOM & PILLAR COAL MINES

    Get PDF
    In recent years, autonomous solutions in the multi-disciplinary field of the mining engineering have been an extremely popular applied research topic. The growing demand for mineral supplies combined with the steady decline in the available surface reserves has driven the mining industry to mine deeper underground deposits. These deposits are difficult to access, and the environment may be hazardous to mine personnel (e.g., increased heat, difficult ventilation conditions, etc.). Moreover, current mining methods expose the miners to numerous occupational hazards such as working in the proximity of heavy mining equipment, possible roof falls, as well as noise and dust. As a result, the mining industry, in its efforts to modernize and advance its methods and techniques, is one of the many industries that has turned to autonomous systems. Vehicle automation in such complex working environments can play a critical role in improving worker safety and mine productivity. One of the most time-consuming tasks of the mining cycle is the transportation of the extracted ore from the face to the main haulage facility or to surface processing facilities. Although conveyor belts have long been the autonomous transportation means of choice, there are still many cases where a discrete transportation system is needed to transport materials from the face to the main haulage system. The current dissertation presents the development of a navigation system for an autonomous shuttle car (ASC) in underground room and pillar coal mines. By introducing autonomous shuttle cars, the operator can be relocated from the dusty, noisy, and potentially dangerous environment of the underground mine to the safer location of a control room. This dissertation focuses on the development and testing of an autonomous navigation system for an underground room and pillar coal mine. A simplified relative localization system which determines the location of the vehicle relatively to salient features derived from on-board 2D LiDAR scans was developed for a semi-autonomous laboratory-scale shuttle car prototype. This simplified relative localization system is heavily dependent on and at the same time leverages the room and pillar geometry. Instead of keeping track of a global position of the vehicle relatively to a fixed coordinates frame, the proposed custom localization technique requires information regarding only the immediate surroundings. The followed approach enables the prototype to navigate around the pillars in real-time using a deterministic Finite-State Machine which models the behavior of the vehicle in the room and pillar mine with only a few states. Also, a user centered GUI has been developed that allows for a human user to control and monitor the autonomous vehicle by implementing the proposed navigation system. Experimental tests have been conducted in a mock mine in order to evaluate the performance of the developed system. A number of different scenarios simulating common missions that a shuttle car needs to undertake in a room and pillar mine. The results show a minimum success ratio of 70%

    A Technology review of smart sensors with wireless networks for applications in hazardous work environments

    Get PDF
    Workers in hazardous environments such as mining are constantly exposed to the health and safety hazards of dynamic and unpredictable conditions. One approach to enable them to manage these hazards is to provide them with situational awareness: real-time data (environmental, physiological, and physical location data) obtained from wireless, wearable, smart sensor technologies deployed at the work area. The scope of this approach is limited to managing the hazards of the immediate work area for prevention purposes; it does not include technologies needed after a disaster. Three critical technologies emerge and converge to support this technical approach: smart-wearable sensors, wireless sensor networks, and low-power embedded computing. The major focus of this report is on smart sensors and wireless sensor networks. Wireless networks form the infrastructure to support the realization of situational awareness; therefore, there is a significant focus on wireless networks. Lastly, the "Future Research" section pulls together the three critical technologies by proposing applications that are relevant to mining. The applications are injured miner (person-down) detection; a wireless, wearable remote viewer; and an ultrawide band smart environment that enables localization and tracking of humans and resources. The smart environment could provide location data, physiological data, and communications (video, photos, graphical images, audio, and text messages)

    Smart Wearable Gadget for Miners Using IOT

    Get PDF
    Safety is the most important part of any kind of assiduity is safety. In extreme circumstances, safety-related negligence could result in the destruction of expensive clothing or the loss of human life. Every min-ing diligence adhere to a few basic preventative measures in order to avoid any generally unwelcome wonders. The most important component at this time is communication in order to continuously monitor various pa-rameters and take the appropriate actions as a result to avoid any risks linked with the product or the management of mortal funds. A stable and wide-range effective communication system between personnel in the mine and the control centre must be built in order to increase safety in un-derground mines. The cable communication network technology is inef-fective within underground mines. Here we can tackle the matter of acci-dents which end with death of several people per annum. It is discovered that the speed of fatality within the coal pit industry is almost six times the speed for all private industries. And most of those accidents are because of toxic gases, fires, and a lack of rescue systems. By implementing mine surveillance gadgets, which may be used within the mine and detect the number of various gases, fall, emergency detection and report to them. This article focuses on the design and analysis of the smart wearable gadget for miners in the mining industry using IoT

    Low-cost sensors technologies for monitoring sustainability and safety issues in mining activities: advances, gaps, and future directions in the digitalization for smart mining

    Get PDF
    Nowadays, monitoring aspects related to sustainability and safety in mining activities worldwide are a priority, to mitigate socio-environmental impacts, promote efficient use of water, reduce carbon footprint, use renewable energies, reduce mine waste, and minimize the risks of accidents and fatalities. In this context, the implementation of sensor technologies is an attractive alternative for the mining industry in the current digitalization context. To have a digital mine, sensors are essential and form the basis of Industry 4.0, and to allow a more accelerated, reliable, and massive digital transformation, low-cost sensor technology solutions may help to achieve these goals. This article focuses on studying the state of the art of implementing low-cost sensor technologies to monitor sustainability and safety aspects in mining activities, through the review of scientific literature. The methodology applied in this article was carried out by means of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and generating science mapping. For this, a methodological procedure of three steps was implemented: (i) Bibliometric analysis as a quantitative method, (ii) Systematic review of literature as a qualitative method, and (iii) Mixed review as a method to integrate the findings found in (i) and (ii). Finally, according to the results obtained, the main advances, gaps, and future directions in the implementation of low-cost sensor technologies for use in smart mining are exposed. Digital transformation aspects for data measurement with low-cost sensors by real-time monitoring, use of wireless network systems, artificial intelligence, machine learning, digital twins, and the Internet of Things, among other technologies of the Industry 4.0 era are discussed.The authors are indebted to the projects PID2021-126405OB-C31 and PID2021-126405OB-C32 funded by FEDER funds—A Way to Make Europe and Spanish Ministry of Economy and Competitiveness MICIN/AEI/10.13039/501100011033/. The financial support of the Research Department of the Catholic University of Temuco and the Civil Engineering Department of the University of Castilla-La Mancha is also appreciated.Peer ReviewedPostprint (published version

    Min Eng

    Get PDF
    The Industrial Internet of Things (IIoT), a concept that combines sensor networks and control systems, has been employed in several industries to improve productivity and safety. U.S. National Institute for Occupational Safety and Health (NIOSH) researchers are investigating IIoT applications to identify the challenges of and potential solutions for transferring IIoT from other industries to the mining industry. Specifically, NIOSH has reviewed existing sensors and communications network systems used in U.S. underground coal mines to determine whether they are capable of supporting IIoT systems. The results show that about 40 percent of the installed post-accident communication systems as of 2014 require minimal or no modification to support IIoT applications. NIOSH researchers also developed an IIoT monitoring and control prototype system using low-cost microcontroller Wi-Fi boards to detect a door opening on a refuge alternative, activate fans located inside the Pittsburgh Experimental Mine and actuate an alarm beacon on the surface. The results of this feasibility study can be used to explore IIoT applications in underground coal mines based on existing communication and tracking infrastructure.CC999999/Intramural CDC HHS/United States2018-01-16T00:00:00Z29348699PMC5769960vault:2590
    corecore