1,548 research outputs found

    On the trade-off between electrical power consumption and flight performance in fixed-wing UAV autopilots

    Get PDF
    This paper sets out a study of the autopilot design for fixed wing Unmanned Aerial Vehicles (UAVs) taking into account the aircraft stability, as well as the power consumption as a function of the selected control strategy. To provide some generality to the outcomes of this study, construction of a reference small-UAV model, based on averaging the main aircraft defining parameters, is proposed. Using such a reference model of small, fixed-wing UAVs, different control strategies are assessed, especially with a view towards enlarging the controllers' sampling time. A beneficial consequence of this sample time enlargement is that the clock rate of the UAV autopilots may be proportionally reduced. This reduction in turn leads directly to decreased electrical power consumption. Such energy saving becomes proportionally relevant as the size and power of the UAV decrease, with benefits of lengthening battery life and, therefore, the flight endurance. Additionally, through the averaged model, which is derived from both published data and computations made from actual data captured from real UAVs, it is shown that behavior predictions beyond that of any particular UAV model may be extrapolated.Peer ReviewedPostprint (author's final draft

    Modeling and Robust Attitude Controller Design for a Small Size Helicopter

    Full text link
    This paper addresses the design and application controller for a small-size unmanned aerial vehicle (UAV). In this work, the main objective is to study the modeling and attitude controller design for a small size helicopter. Based on a non-simplified helicopter model, a new robust attitude control law, which is combined with a nonlinear control method and a model-free method, is proposed in this paper. Both wind gust and ground effect phenomena conditions are involved in this experiment and the result on a real helicopter platform demonstrates the effectiveness of the proposed control algorithm and robustness of its resultant controller.Comment: 6 page

    Longitudinal flight control with a variable span morphing wing

    Get PDF
    The present study focuses on the design of a longitudinal flight controller for an unmanned aircraft equipped with dissymmetric variable-span system (VSMW or Variable-Span Morphing Wing). Its primary role consists in the longitudinal flight stabilization of the aeroplane while in levelled cruise flight, although, it was designed to offer longitudinal flight stabilization for other flight phases as well, such as e.g. take-off and landing. The stabilization algorithm relies on the most up-to-date developments in the state-of-the-art LQR and Batz-Kleinman controller techniques to stabilize the aircraft on its intended longitudinal attitude upon any small atmospheric disturbances inflicted. It was designed for the experimental UAV prototype Olharapo equipped with the VSMW, so it can automatically adjust the VSMW overall wingspan in accordance with the flight speed and stabilize the aircraft in the desired attitude, although, its modular concept allows it to be used for different configurations of the aircraft or even for a different aircraft. The development, simulation and testing of the algorithm were done using the MATLAB® software and the aircraft’s stability and control derivatives previously obtained using the XFLR5® software. Minor adaptations of the flight dynamics equations were performed to allow the compatibilization with the VSMW. The required implementation of imposed flight qualities was also performed to ensure proper scaling the controller weight matrix for optimal values. Finally, the algorithm was tested using three different methods: Classic Disturbances Simulation, Sinusoidal Pitch Variation Test Response and Random Pitch Variation Test Response.O presente trabalho consiste na projeção, programação e teste de um controlador de voo longitudinal destinado a uma aeronave não-tripulada equipada com um sistema de variação dissimétrica da envergadura das asas (conhecido como VSMW, asa dissimétrica ou asa telescópica). Este trabalho tem como principal objetivo desenvolver um controlador capaz de assegurar a estabilidade longitudinal da aeronave em voo nivelado a velocidade de cruzeiro, contudo, este foi também projetado para providenciar essa mesma estabilidade noutras fases de voo tais como a aterragem ou a descolagem. O algoritmo de estabilização baseia-se nas mais sofisticadas técnicas de controlo de voo atualmente disponíveis, mais concretamente LQR e Batz-Kleinman, para estabilizar a aeronave na atitude pretendida aquando da ocorrência de quaisquer pequenas perturbações atmosféricas que afetem a aeronave durante o voo. A aeronave a que se destina trata-se de um protótipo designado de Olharapo equipado com uma asa telescópica que permite ajustar a envergadura total das asas de acordo com a velocidade de voo. No entanto, o conceito modular da estrutura do programa permite que o controlador possa ser utilizado para diferentes configurações da mesma aeronave, ou até mesmo com uma aeronave totalmente diferente. Tanto o desenvolvimento como as simulações e testes do algoritmo foram efetuados com recurso ao software MATLAB® , tendo as necessárias derivadas de estabilidade e controlo iniciais sido providenciadas pelo software XFLR5® . As equações de voo foram devidamente adaptadas para permitirem uma compatibilização com o sistema da asa telescópica e a sua integração nos métodos de controlo LQR e Batz-Kleinman. As qualidades de voo da aeronave foram devidamente definidas e impostas ao controlador para garantir a afinação da matriz de ponderação para valores ótimos. Por fim, o algoritmo foi sujeito a três tipos de testes e simulações: Simulação Clássica por meio de Imposição de Perturbações Atmosféricas, Teste de Resposta a uma Variação Sinusoidal do Ângulo de Arfagem, e Teste de Reposta a uma Variação Aleatória do Ângulo de Arfagem

    Adaptive and Optimal Motion Control of Multi-UAV Systems

    Get PDF
    This thesis studies trajectory tracking and coordination control problems for single and multi unmanned aerial vehicle (UAV) systems. These control problems are addressed for both quadrotor and fixed-wing UAV cases. Despite the fact that the literature has some approaches for both problems, most of the previous studies have implementation challenges on real-time systems. In this thesis, we use a hierarchical modular approach where the high-level coordination and formation control tasks are separated from low-level individual UAV motion control tasks. This separation helps efficient and systematic optimal control synthesis robust to effects of nonlinearities, uncertainties and external disturbances at both levels, independently. The modular two-level control structure is convenient in extending single-UAV motion control design to coordination control of multi-UAV systems. Therefore, we examine single quadrotor UAV trajectory tracking problems to develop advanced controllers compensating effects of nonlinearities and uncertainties, and improving robustness and optimality for tracking performance. At fi rst, a novel adaptive linear quadratic tracking (ALQT) scheme is developed for stabilization and optimal attitude control of the quadrotor UAV system. In the implementation, the proposed scheme is integrated with Kalman based reliable attitude estimators, which compensate measurement noises. Next, in order to guarantee prescribed transient and steady-state tracking performances, we have designed a novel backstepping based adaptive controller that is robust to effects of underactuated dynamics, nonlinearities and model uncertainties, e.g., inertial and rotational drag uncertainties. The tracking performance is guaranteed to utilize a prescribed performance bound (PPB) based error transformation. In the coordination control of multi-UAV systems, following the two-level control structure, at high-level, we design a distributed hierarchical (leader-follower) 3D formation control scheme. Then, the low-level control design is based on the optimal and adaptive control designs performed for each quadrotor UAV separately. As particular approaches, we design an adaptive mixing controller (AMC) to improve robustness to varying parametric uncertainties and an adaptive linear quadratic controller (ALQC). Lastly, for planar motion, especially for constant altitude flight of fixed-wing UAVs, in 2D, a distributed hierarchical (leader-follower) formation control scheme at the high-level and a linear quadratic tracking (LQT) scheme at the low-level are developed for tracking and formation control problems of the fixed-wing UAV systems to examine the non-holonomic motion case. The proposed control methods are tested via simulations and experiments on a multi-quadrotor UAV system testbed

    Fault tolerant control for nonlinear aircraft based on feedback linearization

    Get PDF
    The thesis concerns the fault tolerant flight control (FTFC) problem for nonlinear aircraft by making use of analytical redundancy. Considering initially fault-free flight, the feedback linearization theory plays an important role to provide a baseline control approach for de-coupling and stabilizing a non-linear statically unstable aircraft system. Then several reconfigurable control strategies are studied to provide further robust control performance:- A neural network (NN)-based adaption mechanism is used to develop reconfigurable FTFC performance through the combination of a concurrent updated learninglaw. - The combined feedback linearization and NN adaptor FTFC system is further improved through the use of a sliding mode control (SMC) strategy to enhance the convergence of the NN learning adaptor. - An approach to simultaneous estimation of both state and fault signals is incorporated within an active FTFC system.The faults acting independently on the three primary actuators of the nonlinear aircraft are compensated in the control system.The theoretical ideas developed in the thesis have been applied to the nonlinear Machan Unmanned Aerial Vehicle (UAV) system. The simulation results obtained from a tracking control system demonstrate the improved fault tolerant performance for all the presented control schemes, validated under various faults and disturbance scenarios.A Boeing 747 nonlinear benchmark model, developed within the framework of the GARTEUR FM-AG 16 project “fault tolerant flight control systems”,is used for the purpose of further simulation study and testing of the FTFC scheme developed by making the combined use of concurrent learning NN and SMC theory. The simulation results under the given fault scenario show a promising reconfiguration performance

    Automatic Flight Control Systems

    Get PDF
    The history of flight control is inseparably linked to the history of aviation itself. Since the early days, the concept of automatic flight control systems has evolved from mechanical control systems to highly advanced automatic fly-by-wire flight control systems which can be found nowadays in military jets and civil airliners. Even today, many research efforts are made for the further development of these flight control systems in various aspects. Recent new developments in this field focus on a wealth of different aspects. This book focuses on a selection of key research areas, such as inertial navigation, control of unmanned aircraft and helicopters, trajectory control of an unmanned space re-entry vehicle, aeroservoelastic control, adaptive flight control, and fault tolerant flight control. This book consists of two major sections. The first section focuses on a literature review and some recent theoretical developments in flight control systems. The second section discusses some concepts of adaptive and fault-tolerant flight control systems. Each technique discussed in this book is illustrated by a relevant example

    Roll motion control of a dissymmetrical wingspan aircraft

    Get PDF
    The present study focuses on the design of a controller for an unmanned aircraft using a variable-span dissymmetric system. This is primarily intended to stabilize roll, although it was designed as a robust system for total control. The system in use is new in its application, being studied similar aircraft built to date. The aircraft for which the system has been designed is an experimental UAV built entirely at the University of Beira Interior. The stability derivatives and other data were obtained with the help of XFLR software. The development and simulation were done using MATLAB, where were tested two different control methods, LQR and Batz-Kleinman controller. A review of the flight dynamics equations for a standard aircraft was originally done, being then adapted this new concept. The interaction between the control surfaces and the response of a general aircraft was studied. An implementation of predetermined flying qualities in order to scale the state weight matrix in the LQR controller for optimal levels was also performed. At the end three separate simulations were performed to confirm the validity of the theoretical system in control and stabilization, for leveled flight when suffering disturbances, and for various equilibrium states described by a sinusoidal equation and a random variation.O presente estudo concentra-se no projecto de um controlador para uma aeronave não tripulada usando um sistema de asa de envergadura dissimétrica e variável. Este visa primeiramente estabilizar o rolamento, embora tenha sido projectado um sistema robusto de controlo total. O sistema em uso é pioneiro na sua aplicação, tendo sido estudadas semelhantes aeronaves construídas até à data. A aeronave para qual o sistema foi dimensionado é um UAV experimental construído totalmente na Universidade da Beira Interior. As derivadas de estabilidade e restantes dados aerodinâmicos foram obtidos com a ajuda do software XFLR. O desenvolvimento e simulação foram realizados em software MATLAB, para o qual são testados dois métodos de controlo distintos, com LQR e controlador Batz-Kleinman. Foi inicialmente feita uma revisão das equações da dinâmica de voo para uma aeronave generalizada, sendo depois adaptado o novo conceito em estudo. A interacção entre as superfícies de controlo gerais e a resposta de uma aeronave foi estudada. Uma implementação de qualidades de voo pré-determinadas com vista a dimensionar a matriz de pesos de estado no controlador LQR para níveis óptimos foi também realizada. No final foram feitas três simulações distintas para confirmar teoricamente a validade do sistema no controlo e estabilização, em voo nivelado sofrendo perturbações, e consoante pontos de equilíbrio pré-determinados segundo uma equação sinusoidal e para uma variação aleatória

    Direct Adaptive Control for a Trajectory Tracking UAV

    Get PDF
    This research focuses on the theoretical development and analysis of a direct adaptive control algorithm to enable a fixed-wing UAV to track reference trajectories while in the presence of persistent external disturbances. A typical application of this work is autonomous flight through urban environments, where reference trajectories would be provided by a path planning algorithm and the vehicle would be subjected to significant wind gust disturbances. Full 6-DOF nonlinear and linear UAV simulation models are developed and used to study the performance of the direct adaptive control system for various scenarios. A stability proof is developed to prove convergence of the direct adaptive control system under certain conditions. Specific adaptive controller implementation details are provided, including the use of a sensor blending algorithm to address the non-minimum phase properties of the UAV models. The robustness of the adaptive system pertaining to the amount of modeling error that can be accommodated by the controller is studied, and the disturbance rejection capabilities and limitations of the controllers are also analyzed. The overall results of this research demonstrate that the direct adaptive control algorithm can enable trajectory tracking in cases where there are both significant uncertainties in the external disturbances and considerable error in the UAV model
    corecore