10,559 research outputs found

    Image-based quantitative analysis of gold immunochromatographic strip via cellular neural network approach

    Get PDF
    "(c) 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works."Gold immunochromatographic strip assay provides a rapid, simple, single-copy and on-site way to detect the presence or absence of the target analyte. This paper aims to develop a method for accurately segmenting the test line and control line of the gold immunochromatographic strip (GICS) image for quantitatively determining the trace concentrations in the specimen, which can lead to more functional information than the traditional qualitative or semi-quantitative strip assay. The canny operator as well as the mathematical morphology method is used to detect and extract the GICS reading-window. Then, the test line and control line of the GICS reading-window are segmented by the cellular neural network (CNN) algorithm, where the template parameters of the CNN are designed by the switching particle swarm optimization (SPSO) algorithm for improving the performance of the CNN. It is shown that the SPSO-based CNN offers a robust method for accurately segmenting the test and control lines, and therefore serves as a novel image methodology for the interpretation of GICS. Furthermore, quantitative comparison is carried out among four algorithms in terms of the peak signal-to-noise ratio. It is concluded that the proposed CNN algorithm gives higher accuracy and the CNN is capable of parallelism and analog very-large-scale integration implementation within a remarkably efficient time

    SIRENA: A CAD environment for behavioural modelling and simulation of VLSI cellular neural network chips

    Get PDF
    This paper presents SIRENA, a CAD environment for the simulation and modelling of mixed-signal VLSI parallel processing chips based on cellular neural networks. SIRENA includes capabilities for: (a) the description of nominal and non-ideal operation of CNN analogue circuitry at the behavioural level; (b) performing realistic simulations of the transient evolution of physical CNNs including deviations due to second-order effects of the hardware; and, (c) evaluating sensitivity figures, and realize noise and Monte Carlo simulations in the time domain. These capabilities portray SIRENA as better suited for CNN chip development than algorithmic simulation packages (such as OpenSimulator, Sesame) or conventional neural networks simulators (RCS, GENESIS, SFINX), which are not oriented to the evaluation of hardware non-idealities. As compared to conventional electrical simulators (such as HSPICE or ELDO-FAS), SIRENA provides easier modelling of the hardware parasitics, a significant reduction in computation time, and similar accuracy levels. Consequently, iteration during the design procedure becomes possible, supporting decision making regarding design strategies and dimensioning. SIRENA has been developed using object-oriented programming techniques in C, and currently runs under the UNIX operating system and X-Windows framework. It employs a dedicated high-level hardware description language: DECEL, fitted to the description of non-idealities arising in CNN hardware. This language has been developed aiming generality, in the sense of making no restrictions on the network models that can be implemented. SIRENA is highly modular and composed of independent tools. This simplifies future expansions and improvements.ComisiĂłn Interministerial de Ciencia y TecnologĂ­a TIC96-1392-C02-0

    A multi-view approach to cDNA micro-array analysis

    Get PDF
    The official published version can be obtained from the link below.Microarray has emerged as a powerful technology that enables biologists to study thousands of genes simultaneously, therefore, to obtain a better understanding of the gene interaction and regulation mechanisms. This paper is concerned with improving the processes involved in the analysis of microarray image data. The main focus is to clarify an image's feature space in an unsupervised manner. In this paper, the Image Transformation Engine (ITE), combined with different filters, is investigated. The proposed methods are applied to a set of real-world cDNA images. The MatCNN toolbox is used during the segmentation process. Quantitative comparisons between different filters are carried out. It is shown that the CLD filter is the best one to be applied with the ITE.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the National Science Foundation of China under Innovative Grant 70621001, Chinese Academy of Sciences under Innovative Group Overseas Partnership Grant, the BHP Billiton Cooperation of Australia Grant, the International Science and Technology Cooperation Project of China under Grant 2009DFA32050 and the Alexander von Humboldt Foundation of Germany

    Neuron Segmentation Using Deep Complete Bipartite Networks

    Full text link
    In this paper, we consider the problem of automatically segmenting neuronal cells in dual-color confocal microscopy images. This problem is a key task in various quantitative analysis applications in neuroscience, such as tracing cell genesis in Danio rerio (zebrafish) brains. Deep learning, especially using fully convolutional networks (FCN), has profoundly changed segmentation research in biomedical imaging. We face two major challenges in this problem. First, neuronal cells may form dense clusters, making it difficult to correctly identify all individual cells (even to human experts). Consequently, segmentation results of the known FCN-type models are not accurate enough. Second, pixel-wise ground truth is difficult to obtain. Only a limited amount of approximate instance-wise annotation can be collected, which makes the training of FCN models quite cumbersome. We propose a new FCN-type deep learning model, called deep complete bipartite networks (CB-Net), and a new scheme for leveraging approximate instance-wise annotation to train our pixel-wise prediction model. Evaluated using seven real datasets, our proposed new CB-Net model outperforms the state-of-the-art FCN models and produces neuron segmentation results of remarkable qualityComment: miccai 201

    Color image processing in a cellular neural-network environment

    Get PDF
    When low-level hardware simulations of cellular neural networks (CNNs) are very costly for exploring new applications, the use of a behavioral simulator becomes indispensable. This paper presents a software prototype capable of performing image processing applications using CNNs. The software is based on a CNN multilayer structure in which each primary color is assigned to a unique layer. This allows an added flexibility as different processing applications can be performed in parallel. To be able to handle a full range of color tones, two novel color mapping schemes were derived. In the proposed schemes the color information is obtained from the cell's state rather than from its output. This modification is necessary because for many templates CNN has only binary stable outputs from which only either a fully saturated or a black color can be obtained. Additionally, a postprocessor capable of performing pixelwise logical operations among color layers was developed to enhance the results obtained from CNN. Examples in the areas of medical image processing, image restoration, and weather forecasting are provided to demonstrate the robustness of the software and the vast potential of CN

    Self-organized learning in multi-layer networks

    Get PDF
    We present a framework for the self-organized formation of high level learning by a statistical preprocessing of features. The paper focuses first on the formation of the features in the context of layers of feature processing units as a kind of resource-restricted associative multiresolution learning We clame that such an architecture must reach maturity by basic statistical proportions, optimizing the information processing capabilities of each layer. The final symbolic output is learned by pure association of features of different levels and kind of sensorial input. Finally, we also show that common error-correction learning for motor skills can be accomplished also by non-specific associative learning. Keywords: feedforward network layers, maximal information gain, restricted Hebbian learning, cellular neural nets, evolutionary associative learnin

    GPU-Based Simulation of Cellular Neural Networks for Image Processing

    Get PDF
    The inherent massive parallelism of cellular neural networks makes them an ideal computational platform for kernelbased algorithms and image processing. General-purpose GPUs provide similar massive parallelism, but it can be difficult to design algorithms to make optimal use of the hardware. The presented research includes a GPU abstraction based on cellular neural networks. The abstraction offers a simplified view of massively parallel computation which remains reasonably efficient. An image processing library with visualization software has been developed to showcase the flexibility and power of cellular computation on GPUs. Benchmarks of the library indicate that commodity GPUs can be used to significantly accelerate CNN research and offer a viable alternative to CPU-based image processing algorithms

    Cellular Nonlinear Networks: optimized implementation on FPGA and applications to robotics

    Get PDF
    L'objectiu principal d'aquesta tesi consisteix a estudiar la factibilitat d'implementar un sensor cĂ mera CNN amb plena funcionalitat basat en FPGA de baix cost adequat per a aplicacions en robots mĂČbils. L'estudi dels fonaments de les xarxes cel‱lulars no lineals (CNNs) i la seva aplicaciĂł eficaç en matrius de portes programables (FPGAs) s'ha complementat, d'una banda amb el paral‱lelisme que s'estableix entre arquitectura multi-nucli de les CNNs i els eixams de robots mĂČbils, i per l'altre banda amb la correlaciĂł dinĂ mica de CNNs i arquitectures memristive. A mĂ©s, els memristors es consideren els substituts dels futurs dispositius de memĂČria flash per la seva capacitat d'integraciĂł d'alta densitat i el seu consum d'energia prop de zero. En el nostre cas, hem estat interessats en el desenvolupament d’FPGAs que han deixat de ser simples dispositius per a la creaciĂł rĂ pida de prototips ASIC per esdevenir complets dispositius reconfigurables amb integraciĂł de la memĂČria i els elements de processament general. En particular, s'han explorat com les arquitectures implementades CNN en FPGAs poden ser optimitzades en termes d’àrea ocupada en el dispositiu i el seu consum de potĂšncia. El nostre objectiu final ens ah portat a implementar de manera eficient una CNN-UM amb complet funcionament a un baix cost i baix consum sobre una FPGA amb tecnologĂ­a flash. Per tant, futurs estudis sobre l’arquitectura eficient de la CNN sobre la FPGA i la interconnexiĂł amb els robots comercials disponibles Ă©s un dels objectius d'aquesta tesi que se seguiran en les lĂ­nies de futur exposades en aquest treball.El objetivo principal de esta tesis consiste en estudiar la factibilidad de implementar un sensor cĂĄmara CNN con plena funcionalidad basado en FPGA de bajo coste adecuado para aplicaciones en robots mĂłviles. El estudio de los fundamentos de las redes celulares no lineales (CNNs) y su aplicaciĂłn eficaz en matrices de puertas programables (FPGAs) se ha complementado, por un lado con el paralelismo que se establece entre arquitectura multi -nĂșcleo de las CNNs y los enjambres de robots mĂłviles, y por el otro lado con la correlaciĂłn dinĂĄmica de CNNs y arquitecturas memristive. AdemĂĄs, los memristors se consideran los sustitutos de los futuros dispositivos de memoria flash por su capacidad de integraciĂłn de alta densidad y su consumo de energĂ­a cerca de cero. En nuestro caso, hemos estado interesados en el desarrollo de FPGAs que han dejado de ser simples dispositivos para la creaciĂłn rĂĄpida de prototipos ASIC para convertirse en completos dispositivos reconfigurables con integraciĂłn de la memoria y los elementos de procesamiento general. En particular, se han explorado como las arquitecturas implementadas CNN en FPGAs pueden ser optimizadas en tĂ©rminos de ĂĄrea ocupada en el dispositivo y su consumo de potencia. Nuestro objetivo final nos ah llevado a implementar de manera eficiente una CNN-UM con completo funcionamiento a un bajo coste y bajo consumo sobre una FPGA con tecnologĂ­a flash. Por lo tanto, futuros estudios sobre la arquitectura eficiente de la CNN sobre la FPGA y la interconexiĂłn con los robots comerciales disponibles es uno de los objetivos de esta tesis que se seguirĂĄn en las lĂ­neas de futuro expuestas en este trabajo.The main goal of this thesis consists in studying the feasibility to implement a full-functionality CNN camera sensor based on low-cost FPGA device suitable for mobile robotic applications. The study of Cellular Nonlinear Networks (CNNs) fundamentals and its efficient implementation on Field Programmable Gate Arrays (FPGAs) has been complemented, on one side with the parallelism established between multi-core CNN architecture and swarm of mobile robots, and on the other side with the dynamics correlation of CNNs and memristive architectures. Furthermore, memristors are considered the future substitutes of flash memory devices because of its capability of high density integration and its close to zero power consumption. In our case, we have been interested in the development of FPGAs that have ceased to be simple devices for ASIC fast prototyping to become complete reconfigurable devices embedding memory and processing elements. In particular, we have explored how the CNN architectures implemented on FPGAs can be optimized in terms of area occupied on the device or power consumption. Our final accomplishment has been implementing efficiently a fully functional reconfigurable CNN-UM on a low-cost low-power FPGA based on flash technology. Therefore, further studies on an efficient CNN architecture on FPGA and interfacing it with commercially-available robots is one of the objectives of this thesis that will be followed in the future directions exposed in this work

    Distributed Hypothesis Testing, Attention Shifts and Transmitter Dynatmics During the Self-Organization of Brain Recognition Codes

    Full text link
    BP (89-A-1204); Defense Advanced Research Projects Agency (90-0083); National Science Foundation (IRI-90-00530); Air Force Office of Scientific Research (90-0175, 90-0128); Army Research Office (DAAL-03-88-K0088
    • 

    corecore