24,187 research outputs found

    Micro-precision control/structure interaction technology for large optical space systems

    Get PDF
    The CSI program at JPL is chartered to develop the structures and control technology needed for sub-micron level stabilization of future optical space systems. The extreme dimensional stability required for such systems derives from the need to maintain the alignment and figure of critical optical elements to a small fraction (typically 1/20th to 1/50th) of the wavelength of detected radiation. The wavelength is about 0.5 micron for visible light and 0.1 micron for ultra-violet light. This lambda/50 requirement is common to a broad class of optical systems including filled aperture telescopes (with monolithic or segmented primary mirrors), sparse aperture telescopes, and optical interferometers. The challenge for CSI arises when such systems become large, with spatially distributed optical elements mounted on a lightweight, flexible structure. In order to better understand the requirements for micro-precision CSI technology, a representative future optical system was identified and developed as an analytical testbed for CSI concepts and approaches. An optical interferometer was selected as a stressing example of the relevant mission class. The system that emerged was termed the Focus Mission Interferometer (FMI). This paper will describe the multi-layer control architecture used to address the FMI's nanometer level stabilization requirements. In addition the paper will discuss on-going and planned experimental work aimed at demonstrating that multi-layer CSI can work in practice in the relevant performance regime

    Quarter car active suspension system design using optimal and robust control method

    Get PDF
    This paper offers with the theoretical and computational evaluation of optimal& robust controlproblems, with the goal of providing answers to them with MATLAB simulation.For the robust control, -synthesis controller and for the optimal control, LQR controller are designed for a quarter car active suspension system to maximize the ride comfort and road handling criteria’s of the vehicle. The proposed controllers are designed using Matlab script program using time domain analysis for the four road disturbances (bump, random sine pavement and white noise) for the control targets suspension deflection, body acceleration and body travel. Finally the simulation result proves the effectiveness of the active suspension system with -synthesis controller

    POGO Instabilities Suppression Evaluation

    Get PDF
    A dynamic (frequency response) analysis was made of a liquid oxygen feed system consisting of a low-speed inducer, a high-speed main pump and a positive displacement pulser utilized for simulating pogo induced pressure oscillations. Based on the results of the analysis, an active control system for suppression of pulser generated pressure oscillations was designed, fabricated and tested. The test results verified that the suppressor was effective in attenuating the generated pressure oscillations over the frequency range from 10 to 30 Hz

    Conceptual design of pointing control systems for space station gimballed payloads

    Get PDF
    A conceptual design of the control system for Payload Pointing Systems (PPS) is developed using classic Proportional-Integral-Derivatives (PID) techniques. The major source of system pointing error is due to the disturbance-rich environment of the space station in the form of gimbal baseplate motions. These baseplate vibrations are characterized using Fast Fourier Transform (FFT) techniques. Both time domain and frequency domain dynamic models are developed to assess control system performance. Three basic methods exist for the improvement of PPS pointing performance: increase control system bandwidth, add Image Motion Compensation, and/or reduce (or change) the baseplate disturbance environment

    The JPL Phase B interferometer testbed

    Get PDF
    Future NASA missions with large optical systems will require alignment stability at the nanometer level. However, design studies indicate that vibration resulting from on-board disturbances can cause jitter at levels three to four orders of magnitude greater than this. Feasibility studies have shown that a combination of three distinct control layers will be required for these missions, including disturbance isolation, active and passive structural vibration suppression, and active optical pathlength compensation. The CSI technology challenge is to develop these design and control approaches that can reduce vibrations in the optical train by a factor of 1000 to 10,000. The focus of the paper is on describing the Phase B Testbed structure and facility, as the experimental results are included in other papers presented at this same conference

    Active vibration control (AVC) of a satellite boom structure using optimally positioned stacked piezoelectric actuators

    No full text
    In this paper, results for active vibration control predicted from experimental measurements on a lightweight structure are compared with purely computational predictions. The structure studied is a 4.5m long satellite boom consisting of 10 identical bays with equilateral triangular cross sections. First, the results from a Fortran code that is based on a receptance analysis are validated against the experimental forced response of the boom structure. Exhaustive searches are then carried out to find the optimum positions for one and two actuators. Finally, a genetic algorithm is employed to find high-quality positions for three actuators on the structure that will achieve the greatest reductions in vibration transmission. Having found these actuator positions, experiments are then carried out to verify the quality of the theoretical predictions. It was found that the attenuation achievable in practice for one, two and three actuators were, respectively, 15.1, 26.1 and 33.5 dB

    Active vibration control (AVC) of a satellite boom structure using optimally positioned stacked piezoelectric actuators

    No full text
    In this paper, results for active vibration control predicted from experimental measurements on a lightweight structure are compared with purely computational predictions. The structure studied is a 4.5m long satellite boom consisting of 10 identical bays with equilateral triangular cross sections. First, the results from a Fortran code that is based on a receptance analysis are validated against the experimental forced response of the boom structure. Exhaustive searches are then carried out to find the optimum positions for one and two actuators. Finally, a genetic algorithm is employed to find high-quality positions for three actuators on the structure that will achieve the greatest reductions in vibration transmission. Having found these actuator positions, experiments are then carried out to verify the quality of the theoretical predictions. It was found that the attenuation achievable in practice for one, two and three actuators were, respectively, 15.1, 26.1 and 33.5 dB

    Adaptive output feedback control of aircraft flexible modes

    Get PDF
    The application of adaptive output feedback augmentative control to the flexible aircraft problem is presented. Experimental validation of control scheme was carried out using a three disk torsional pendulum. In the reference model adaptive control scheme, the rigid aircraft reference model and neural network adaptation is used to control structural flexible modes and compensate for the effects unmodeled dynamics and parametric variations of a classical high order large passenger aircraft. The attenuation of specific low and high frequency flexible mode depending on linear controller design specifications and adaptation parameters were observed. The effectiveness of the approach was seen in flexibility control of the high dimensional, nonminimum phase, nonlinear aircraft model with parametric uncertainties of wind and unmodeled dynamics of actuators and sensors

    <i>H</i><sub>2</sub> and mixed <i>H</i><sub>2</sub>/<i>H</i><sub>∞</sub> Stabilization and Disturbance Attenuation for Differential Linear Repetitive Processes

    Get PDF
    Repetitive processes are a distinct class of two-dimensional systems (i.e., information propagation in two independent directions) of both systems theoretic and applications interest. A systems theory for them cannot be obtained by direct extension of existing techniques from standard (termed 1-D here) or, in many cases, two-dimensional (2-D) systems theory. Here, we give new results towards the development of such a theory in H2 and mixed H2/H∞ settings. These results are for the sub-class of so-called differential linear repetitive processes and focus on the fundamental problems of stabilization and disturbance attenuation
    • 

    corecore