209 research outputs found

    Nonholonomic motion planning: steering using sinusoids

    Get PDF
    Methods for steering systems with nonholonomic constraints between arbitrary configurations are investigated. Suboptimal trajectories are derived for systems that are not in canonical form. Systems in which it takes more than one level of bracketing to achieve controllability are considered. The trajectories use sinusoids at integrally related frequencies to achieve motion at a given bracketing level. A class of systems that can be steered using sinusoids (claimed systems) is defined. Conditions under which a class of two-input systems can be converted into this form are given

    Potential field functions for motion planning and posture of the standard 3 - trailer system

    Get PDF
    This paper presents a set of artificial potential field functions that improves upon, in general, the motion planning and posture control, with theoretically guaranteed point and posture stabilities, convergence and collision avoidance properties of 3-trailer systems in a priori known environment. We basically design and inject two new concepts; ghost walls and the distance optimization technique (DOT) to strengthen point and posture stabilities, in the sense of Lyapunov, of our dynamical model. This new combination of techniques emerges as a convenient mechanism for obtaining feasible orientations at the target positions with an overall reduction in the complexity of the navigation laws. The effectiveness of the proposed control laws were demonstrated via simulations of two traffic scenarios

    Motion planning and posture control of the general 3 - trailer system

    Get PDF
    This paper presents a set of artificial potential field functions that improves upon, in general, the motion planning and posture control, with theoretically guaranteed point and posture stabilities, convergence and collision avoidance properties of the general3-trailer system in a priori known environment. We basically design and inject two new concepts; ghost walls and the distance optimization technique (DOT) to strengthen point and posture stabilities, in the sense of Lyapunov, of our dynamical model. This new combination of techniques emerges as a convenient mechanism for obtaining feasible orientations at the target positions with an overall reduction in the complexity of the navigation laws. Simulations are provided to demonstrate the effectiveness of the controls laws

    Trajectory tracking control of a car-trailer system

    Full text link

    Linear Stability of Reversing a Car-trailer Combination

    Get PDF
    In this paper, we investigate the reverse motion of a car-trailer combination. The single track model of the vehicle is used with quasi-static tire model to design a simple linear feedback controller that can achieve stable reversing motion along a straight path. The linear stability of the closed-loop system is analyzed by constructing stability charts in the plane of the control gains. The effect of the reversing speed of the vehicle on the stability is also shown. In order to validate the theoretical results, laboratory experiments are carried out using a small-scale vehicle and a conveyor belt

    Kinematics, motion analysis and path planning for four kinds of wheeled mobile robots

    Get PDF

    Nonholonomic Feedback Control Among Moving Obstacles

    Get PDF
    A feedback controller is developed for navigating a nonholonomic vehicle in an area with multiple stationary and possibly moving obstacles. Among other applications the developed algorithms can be used for automatic parking of a passenger car in a parking lot with complex configuration or a ground robot in cluttered environment. Several approaches are explored which combine nonholonomic systems control based on sliding modes and potential field methods

    Symmetries in Motion: Geometric Foundations of Motion Control

    Get PDF
    Some interesting aspects of motion and control, such as those found in biological and robotic locomotion and attitude control of spacecraft, involve geometric concepts. When an animal or a robot moves its joints in a periodic fashion, it can rotate or move forward. This observation leads to the general idea that when one variable in a system moves in a periodic fashion, motion of the Whole object can result. This property can be used for control purposes; the position and attitude Of a satellite, for example, are often controlled by periodic motions of parts of the satellite, such as spinning rotors. One of the geometric tools that has been used to describe this phenomenon is that of connections, a notion that is used extensively in general relativity and other parts of theoretical physics. This tool, part of the general subject Of geometric mechanics, has been helpful in the study of both the stability and instability of a system and system bifurcations, that is, changes in the nature of the system dynamics, as some parameter changes. Geometric mechanics, currently in a period of rapid evolution, has been used, for example, to design stabilizing feedback control systems in attitude dynamics. Theory is also being developed for systems with rolling constraints such as those found in a simple rolling wheel. This paper explains how some of these tools of geometric mechanics are used in the study of motion control and locomotion generation
    corecore