8,707 research outputs found

    Design of Spectrum Sensing Policy for Multi-user Multi-band Cognitive Radio Network

    Full text link
    Finding an optimal sensing policy for a particular access policy and sensing scheme is a laborious combinatorial problem that requires the system model parameters to be known. In practise the parameters or the model itself may not be completely known making reinforcement learning methods appealing. In this paper a non-parametric reinforcement learning-based method is developed for sensing and accessing multi-band radio spectrum in multi-user cognitive radio networks. A suboptimal sensing policy search algorithm is proposed for a particular multi-user multi-band access policy and the randomized Chair-Varshney rule. The randomized Chair-Varshney rule is used to reduce the probability of false alarms under a constraint on the probability of detection that protects the primary user. The simulation results show that the proposed method achieves a sum profit (e.g. data rate) close to the optimal sensing policy while achieving the desired probability of detection.Comment: In Proceedings of CISS 2012 Conference, Princeton, NJ, USA, March 201

    Intelligent Wireless Communications Enabled by Cognitive Radio and Machine Learning

    Full text link
    The ability to intelligently utilize resources to meet the need of growing diversity in services and user behavior marks the future of wireless communication systems. Intelligent wireless communications aims at enabling the system to perceive and assess the available resources, to autonomously learn to adapt to the perceived wireless environment, and to reconfigure its operating mode to maximize the utility of the available resources. The perception capability and reconfigurability are the essential features of cognitive radio while modern machine learning techniques project great potential in system adaptation. In this paper, we discuss the development of the cognitive radio technology and machine learning techniques and emphasize their roles in improving spectrum and energy utility of wireless communication systems. We describe the state-of-the-art of relevant techniques, covering spectrum sensing and access approaches and powerful machine learning algorithms that enable spectrum- and energy-efficient communications in dynamic wireless environments. We also present practical applications of these techniques and identify further research challenges in cognitive radio and machine learning as applied to the existing and future wireless communication systems

    On Green Energy Powered Cognitive Radio Networks

    Full text link
    Green energy powered cognitive radio (CR) network is capable of liberating the wireless access networks from spectral and energy constraints. The limitation of the spectrum is alleviated by exploiting cognitive networking in which wireless nodes sense and utilize the spare spectrum for data communications, while dependence on the traditional unsustainable energy is assuaged by adopting energy harvesting (EH) through which green energy can be harnessed to power wireless networks. Green energy powered CR increases the network availability and thus extends emerging network applications. Designing green CR networks is challenging. It requires not only the optimization of dynamic spectrum access but also the optimal utilization of green energy. This paper surveys the energy efficient cognitive radio techniques and the optimization of green energy powered wireless networks. Existing works on energy aware spectrum sensing, management, and sharing are investigated in detail. The state of the art of the energy efficient CR based wireless access network is discussed in various aspects such as relay and cooperative radio and small cells. Envisioning green energy as an important energy resource in the future, network performance highly depends on the dynamics of the available spectrum and green energy. As compared with the traditional energy source, the arrival rate of green energy, which highly depends on the environment of the energy harvesters, is rather random and intermittent. To optimize and adapt the usage of green energy according to the opportunistic spectrum availability, we discuss research challenges in designing cognitive radio networks which are powered by energy harvesters

    Dynamic Spectrum Access in Cognitive Radio Networks with RF Energy Harvesting

    Full text link
    Spectrum efficiency and energy efficiency are two critical issues in designing wireless networks. Through dynamic spectrum access, cognitive radios can improve the spectrum efficiency and capacity of wireless networks. On the other hand, radio frequency (RF) energy harvesting has emerged as a promising technique to supply energy to wireless networks and thereby increase their energy efficiency. Therefore, to achieve both spectrum and energy efficiencies, the secondary users in a cognitive radio network (CRN) can be equipped with the RF energy harvesting capability and such a network can be referred to as an RF-powered cognitive radio network. In this article, we provide an overview of the RF-powered CRNs and discuss the challenges that arise for dynamic spectrum access in these networks. Focusing on the tradeoff among spectrum sensing, data transmission, and RF energy harvesting, then we discuss the dynamic channel selection problem in a multi-channel RF-powered CRN. In the RF-powered CRN, a secondary user can adaptively select a channel to transmit data when the channel is not occupied by any primary user. Alternatively, the secondary user can harvest RF energy for data transmission if the channel is occupied. The optimal channel selection policy of the secondary user can be obtained by formulating a Markov decision process (MDP) problem. We present some numerical results obtained by solving this MDP problem.Comment: To appear in IEEE Wireless Communication

    Techniques for Cooperative Cognitive Radio Networks

    Full text link
    The frequency spectrum is an essential resource for wireless communication. Special sections of the spectrum are used for military purposes, governments sell some frequency bands to broadcasting and mobile communications companies for commercial use, others such as ISM (Industrial, Science and Medical) bands are available for the public free of charge. As the spectrum becomes overcrowded, there seem to be two possible solutions: pushing the frequency limits higher to frequencies of 60 GHz and above, or reaggregating the densely used licensed frequency bands. The new Cognitive Radio (CR) approach comes with the feasible solution to spectrum scarcity. Secondary utilization of a licensed spectrum band can enhance the spectrum usage and introduce a reliable solution to its dearth. In such a cognitive radio network, secondary users can access the spectrum under the constraint that a minimum quality of service is guaranteed for the licensed primary users. In this thesis, we focus on spectrum sharing techniques in cognitive radio network where there is a number of secondary users sharing unoccupied spectrum holes. More specifically, we introduce two collaborative cognitive radio networks in which the secondary user cooperate with the primary user to deliver the data of the primary user.Comment: Master's thesi

    Opportunistic Spectrum Sharing in Dynamic Access Networks: Deployment Challenges, Optimizations, Solutions, and Open Issues

    Full text link
    In this paper, we investigate the issue of spectrum assignment in CRNs and examine various opportunistic spectrum access approaches proposed in the literature. We provide insight into the efficiency of such approaches and their ability to attain their design objectives. We discuss the factors that impact the selection of the appropriate operating channel(s), including the important interaction between the cognitive linkquality conditions and the time-varying nature of PRNs. Protocols that consider such interaction are described. We argue that using best quality channels does not achieve the maximum possible throughput in CRNs (does not provide the best spectrum utilization). The impact of guard bands on the design of opportunistic spectrum access protocols is also investigated. Various complementary techniques and optimization methods are underlined and discussed, including the utilization of variablewidth spectrum assignment, resource virtualization, full-duplex capability, cross-layer design, beamforming and MIMO technology, cooperative communication, network coding, discontinuousOFDM technology, and software defined radios. Finally, we highlight several directions for future research in this field

    Security and Privacy Challenges in Cognitive Wireless Sensor Networks

    Full text link
    Wireless sensor networks (WSNs) have attracted a lot of interest in the research community due to their potential applicability in a wide range of real-world practical applications. However, due to the distributed nature and their deployments in critical applications without human interventions and sensitivity and criticality of data communicated, these networks are vulnerable to numerous security and privacy threats that can adversely affect their performance. These issues become even more critical in cognitive wireless sensor networks (CWSNs) in which the sensor nodes have the capabilities of changing their transmission and reception parameters according to the radio environment under which they operate in order to achieve reliable and efficient communication and optimum utilization of the network resources. This chapter presents a comprehensive discussion on the security and privacy issues in CWSNs by identifying various security threats in these networks and various defense mechanisms to counter these vulnerabilities. Various types of attacks on CWSNs are categorized under different classes based on their natures and targets, and corresponding to each attack class, appropriate security mechanisms are also discussed. Some critical research issues on security and privacy in CWSNs are also identified.Comment: 36 pages, 4 figures, 2 tables. The book chapter is accepted for publication in 201

    Dynamic Spectrum Access: Signal Processing, Networking, and Regulatory Policy

    Full text link
    In this article, we first provide a taxonomy of dynamic spectrum access. We then focus on opportunistic spectrum access, the overlay approach under the hierarchical access model of dynamic spectrum access. we aim to provide an overview of challenges and recent developments in both technological and regulatory aspects of opportunistic spectrum access.Comment: 20 pages, 7 figures, submitted to IEEE Signal Processing Magazin

    Routing Protocols for Cognitive Radio Networks: A Survey

    Full text link
    This article has been withdrawn by arXiv administrators because it plagiarises http://www2.ece.ohio-state.edu/~ekici/papers/crnroutingsurvey.pdfComment: This article has been withdrawn by arXiv administrators because it plagiarises http://www2.ece.ohio-state.edu/~ekici/papers/crnroutingsurvey.pd

    Dynamic Profit Maximization of Cognitive Mobile Virtual Network Operator

    Full text link
    We study the profit maximization problem of a cognitive virtual network operator in a dynamic network environment. We consider a downlink OFDM communication system with various network dynamics, including dynamic user demands, uncertain sensing spectrum resources, dynamic spectrum prices, and time-varying channel conditions. In addition, heterogenous users and imperfect sensing technology are incorporated to make the network model more realistic. By exploring the special structural of the problem, we develop a low-complexity on-line control policies that determine pricing and resource scheduling without knowing the statistics of dynamic network parameters. We show that the proposed algorithms can achieve arbitrarily close to the optimal profit with a proper trade-off with the queuing delay
    • …
    corecore