1,807 research outputs found

    Pametne uredske stolice sa senzorima za otkrivanje položaja i navika sjedenja – pregled literature

    Get PDF
    The health consequences of prolonged sitting in the office and other work chairs have recently been tried to be alleviated or prevented by the application of modern technologies. Smart technologies and sensors are installed in different parts of office chairs, which enables monitoring of seating patterns and prevents positions that potentially endanger the health of users. The aim of this paper is to provide an overview of previous research in the field of the application of smart technologies and sensors built into office and other types of chairs in order to prevent diseases. The articles published in the period 2010-2020 and indexed in WoS CC, Scopus, and IEEE Xplore databases, with the keywords “smart chair” and “sensor chair” were analysed. 15 articles were processed, with their research being based on the use of different types of sensors that determine the contact pressures between the user’s body and stool parts and recognise different body positions when sitting, which can prevent negative health consequences. Analysed papers prove that the use of smart technology and a better understanding of sitting, using various sensors and applications that read body pressure and determine the current body position, can act as preventive health care by detecting proper heart rate and beats per minute, the activity of individual muscle groups, proper breathing and estimates of blood oxygen levels. In the future research, it is necessary to compare different types of sensors, methods used and the results obtained in order to determine which of them are most suitable for the future development of seating furniture for work.Posljedice dugotrajnog sjedenja na uredskim i drugim radnim stolicama u posljednje se vrijeme pokušavaju ublažiti ili spriječiti primjenom suvremenih tehnologija. U različite dijelove uredskih stolica ugrađuju se pametne tehnologije i senzori, što omogućuje praćenje rasporeda sjedenja i izbjegavanje položaja koji potencijalno ugrožavaju zdravlje korisnika. Cilj ovog rada jest davanje pregleda dosadašnjih istraživanja u području primjene suvremenih pametnih tehnologija i senzora ugrađenih u uredske i ostale vrste stolica radi prevencije obolijevanja korisnika. Analizirani su članci objavljeni u razdoblju od 2010. do 2020. i indeksirani su u bazama podataka WoS CC, Scopus i IEEE Xplore, a izdvojeni su prema ključnim riječima pametna stolica i senzorska stolica. Obrađeno je 15 članaka u kojima su se istraživanja temeljila na primjeni različitih vrsta senzora koji određuju kontaktne tlakove između korisnikova tijela i dijelova stolice te raspoznaju različite položaje tijela pri sjedenju, čime se mogu prevenirati negativne posljedice za zdravlje. U analiziranim istraživanjima autori su dokazali da primjena pametne tehnologije i bolje razumijevanje sjedenja uporabom različitih senzora i aplikacija kojima se očitava pritisak tijela i određuje njegov trenutačni položaj može preventivno djelovati zahvaljujući praćenju rada srca i broja otkucaja u minuti, aktivnosti pojedinih mišićnih skupina, pravilnog disanja, procjene razine kisika u krvi i sl. U budućim istraživanjima potrebno je usporediti različite tipove senzora, primijenjene metode i dobivene rezultate kako bi se uočilo koji su od njih najprikladniji za budući razvoj radnog namještaja za sjedenje

    Specifying, Analyzing, Integrating Mobile Apps and Location Sensors as part of Cyber-Physical Systems in the Classroom Environment

    Get PDF
    Cyber-Physical Systems (CPS) are characterized as complex systems usually networked, composed of several heterogeneous components that make the connection between events in the physical environment with computation. We can observe that this kind of systems is increasingly used in different areas such as automotive facilities, construction (civil engineering), health care and energy industry, providing a service or activity which depends on the interaction with users and the physical environment in which they are installed. Nowadays, in the educational context, the process of control and monitor of evaluation activities is conducted in a non-automated way by lecturers. This control is performed before, during and after the beginning of the evaluation activity, and include logistical processes such as classroom reservation, distribution of students per classroom, attendance record or fraud control. However, in an environment involving a large number of students, the execution of these tasks becomes difficult to perform efficiently and safely, requiring innovative techniques or assistance tools. In this work, the creation/design of a cyber-physical system through a modeling approach is proposed, aiming to help teachers to control and monitor evaluation activities. Based on a systematic literature study, we claim that there are no studies presenting the modeling of cyber-physical systems in an educational context, enhancing the interest of the proposed case study. In this document, we show how we used a framework named ModelicaML to model this system during the design phase. Also, this framework will offer a simulation component to simulate the behavior of the prescribed system. On the side of the hardware architecture, for the purpose of identifying the valid seats for the specific students inclass during the examination period, an indoor location system will be used, allowing to blueprint the physical layout of the room and globally manage the activity workflow. We finish this work by showing with empirical studies the gains of our solution when compared to the traditional method

    A Systematic Review on IoT-Based Smart Technologies for Seat Occupancy and Reservation Needs in Smart Libraries at Institution of Higher Learning

    Get PDF
    The introduction of industry 4.0 technologies, including artificial intelligence (AI), the Internet of Things (IoT), and other cutting-edge technological developments, has completely transformed traditional library practises in higher education. Despite the topic’s unquestionable importance, the main objective of this chapter is to address the effects of IoT technology and it is inconsistent and dispersed. However, there are various challenges, such as accurate reservation methods, real-time seat occupancy tracking, and reservation time estimation. To discover, compare, and characterize current investigations in the Smart Library Seat Occupancy and Reservation system (SLSORS), this proposed book chapter examined articles published between 2016 and 2022. In the SLSORS, we will also give a thorough taxonomy and perform a technical analysis of the articles. This provides the much-needed clarity regarding the problems associated with SLSORS and their available literature-based solutions. The fundamental taxonomy is framed by the reservation security, seat reservation, seat selection, and seat availability criteria. Thus, the benefits and drawbacks of the selected approaches are also offered, along with a full comparison of evaluation methodology, evaluation tools, and evaluation metrics. Furthermore, this chapter incorporates all processes and method for SLSORS and drew attention to the ongoing challenges that this chapter is seeking to address

    ACUTA Journal of Telecommunications in Higher Education

    Get PDF
    In This Issue lT Market Clock for Enterprise Networking lnfrastructure, 2010 Emerging Technology Trends-Finding the Next Big Thing Money and Mobile Access Challenge Community Colleges A Business Perspective on Hosted Communications FMC: Ready to Fly or Flop? Challenges Facing Broadband Wireless Providers Deploying IEEE 802.11n Data and Security Networks Campuswide While Optimizing Energy Efficiency Interview President\u27s Message. From the Executive Director O&A from the CI

    2003 LTER Network Office Annual Report

    Get PDF
    A Report from the Network Office of the U.S. Long Term Ecological Research Network for work accomplished in Year 1 of DEB-0236154. December 16, 200

    ACUTA Journal of Telecommunications in Higher Education

    Get PDF
    In This Issue lT Market Clock for Enterprise Networking lnfrastructure, 2010 Emerging Technology Trends-Finding the Next Big Thing Money and Mobile Access Challenge Community Colleges A Business Perspective on Hosted Communications FMC: Ready to Fly or Flop? Challenges Facing Broadband Wireless Providers Deploying IEEE 802.11n Data and Security Networks Campuswide While Optimizing Energy Efficiency Interview President\u27s Message. From the Executive Director O&A from the CI

    Meeting the growing demand for engineers and their educators: the potential for open and distance learning

    Get PDF
    As with all teaching, open and distance approaches are successful only if based on good pedagogical design addressing the purpose, structure and pace of the material, hence engaging students and encouraging active learning. For distance learning such pedagogical design is often expensive, and can only be justified by comparatively large student numbers. Much open and distance teaching offers meagre student support. To be successful, course developers must integrate student support into the learning materials, including such elements as a modest number of face-to-face sessions or electronic communication at a distance. This presentation discusses these issues in the context of SET distance teaching and presents examples of good practice from the UKOU, including: • an introductory course in ICT that adopts an issues-based approach, in order to de-mystify the subject and make it more attractive to students • resource-based approaches in engineering education • team projects at a distance • an emphasis on ‘active learning’ An argument is also to be made for the importance of openness if we really wish to promote engineering. In this context ‘openness’ means making programmes available to all students (even those without formal school-leaving qualifications) that will ultimately enable them to qualify as a professional engineer or an educator of engineers. The traditional approach to engineering education has been hierarchical and linear: a good school leaving certificate in mathematics / science followed by an often very theoretical university education plus an application-oriented final project. If we are serious about attracting new engineers, this will no longer do. An open and distance approach to engineering formation, based on outcomes rather than input educational levels, and with an emphasis on lifelong learning and professional development, can make a major contribution to chang

    Learning Opportunities and Challenges of Sensor-enabled Intelligent Tutoring Systems on Mobile Platforms: Benchmarking the Reliability of Mobile Sensors to Track Human Physiological Signals and Behaviors to Enhance Tablet-Based Intelligent Tutoring Systems

    Get PDF
    Desktop-based intelligent tutoring systems have existed for many decades, but the advancement of mobile computing technologies has sparked interest in developing mobile intelligent tutoring systems (mITS). Personalized mITS are applicable to not only stand-alone and client-server systems but also cloud systems possibly leveraging big data. Device-based sensors enable even greater personalization through capture of physiological signals during periods of student study. However, personalizing mITS to individual students faces challenges. The Achilles heel of personalization is the feasibility and reliability of these sensors to accurately capture physiological signals and behavior measures. This research reviews feasibility and benchmarks reliability of basic mobile platform sensors in various student postures. The research software and methodology are generalizable to a range of platforms and sensors. Incorporating the tile-based puzzle game 2048 as a substitute for a knowledge domain also enables a broad spectrum of test populations. Baseline sensors include the on-board camera to detect eyes/faces and the Bluetooth Empatica E4 wristband to capture heart rate, electrodermal activity (EDA), and skin temperature. The test population involved 100 collegiate students randomly assigned to one of three different ergonomic positions in a classroom: sitting at a table, standing at a counter, or reclining on a sofa. Well received by the students, EDA proved to be more reliable than heart rate or face detection in the three different ergonomic positions. Additional insights are provided on advancing learning personalization through future sensor feasibility and reliability studies
    corecore