168 research outputs found

    Energy Harvesting Wireless Communications: A Review of Recent Advances

    Get PDF
    This article summarizes recent contributions in the broad area of energy harvesting wireless communications. In particular, we provide the current state of the art for wireless networks composed of energy harvesting nodes, starting from the information-theoretic performance limits to transmission scheduling policies and resource allocation, medium access and networking issues. The emerging related area of energy transfer for self-sustaining energy harvesting wireless networks is considered in detail covering both energy cooperation aspects and simultaneous energy and information transfer. Various potential models with energy harvesting nodes at different network scales are reviewed as well as models for energy consumption at the nodes.Comment: To appear in the IEEE Journal of Selected Areas in Communications (Special Issue: Wireless Communications Powered by Energy Harvesting and Wireless Energy Transfer

    Energy Cost Optimization for Strongly Stable Multi-Hop Green Cellular Networks

    Get PDF
    Last decade witnessed the explosive growth in mobile devices and their traffic demand, and hence the significant increase in the energy cost of the cellular service providers. One major component of energy expenditure comes from the operation of base stations. How to reduce energy cost of base stations while satisfying users’ soaring demands has become an imperative yet challenging problem. In this dissertation, we investigate the minimization of the long-term time-averaged expected energy cost while guaranteeing network strong stability. Specifically, considering flow routing, link scheduling, and energy constraints, we formulate a time-coupling stochastic Mixed-Integer Non-Linear Programming (MINLP) problem, which is prohibitively expensive to solve. We reformulate the problem by employing Lyapunov optimization theory and develop a decomposition based algorithm which ensures network strong stability. We obtain the bounds on the optimal result of the original problem and demonstrate the tightness of the bounds and the efficacy of the proposed scheme

    Joint Data Routing and Power Scheduling for Wireless Powered Communication Networks

    Full text link
    In a wireless powered communication network (WPCN), an energy access point supplies the energy needs of the network nodes through radio frequency wave transmission, and the nodes store the received energy in their batteries for their future data transmission. In this paper, we propose an online stochastic policy that jointly controls energy transmission from the EAP to the nodes and data transfer among the nodes. For this purpose, we first introduce a novel perturbed Lyapunov function to address the limitations on the energy consumption of the nodes imposed by their batteries. Then, using Lyapunov optimization method, we propose a policy which is adaptive to any arbitrary channel statistics in the network. Finally, we provide theoretical analysis for the performance of the proposed policy and show that it stabilizes the network, and the average power consumption of the network under this policy is within a bounded gap of the minimum power level required for stabilizing the network

    Resource Management and Pricing in Networks

    Get PDF
    Resource management is important for network design and deployment. Resource management and allocation have been studied under a wide variety of scenarios --- routing in wired networks, scheduling in cellular networks, multiplexing, switching, and channel access in opportunistic networks are but a few examples. In this dissertation, we revisit resource management in the context of routing and scheduling in multihop wireless networks and pricing in single resource systems. The first issue addressed is of delays in multihop wireless networks. The resource under contention is capacity which is allocated by a joint routing and scheduling algorithm. Delay in wireless networks is a key issue gaining interest with the growth of interactive applications and proliferation of wireless networks. We start with an investigation of the back-pressure algorithm (BPA), an algorithm that activates the schedule with the largest sum of link weights in a timeslot. Though the BPA is throughput-optimal, it has poor end-to-end delays. Our investigation identifies poor routing decisions at low loads as one cause for it. We improve the delay performance of max-weight algorithms by proposing a general framework for routing and scheduling algorithms that allow directing packets towards the sink node dynamically. For a stationary environment, we explicitly formulate delay minimization as a static problem while maintaining stability. We see similar improved delay performance with the advantage of reduced per time-slot complexity. Next, the issue of pricing for flow based models is studied. The increasing popularity of cloud computing and the ease of commerce over the Internet is making pricing a key issue requiring greater attention. Although pricing has been extensively studied in the context of maximizing revenue and fairness, we take a different perspective and investigate pricing with predictability. Prior work has studied resource allocations that link insensitivity and predictability. In this dissertation, we present a detailed analysis of pricing under insensitive allocations. We study three common pricing models --- fixed rate pricing, Vickrey-Clarke-Groves (VCG) auctions, and congestion-based pricing, and provide the expected operator revenue and user payments under them. A pre-payment scheme is also proposed where users pay on arrival a fee for their estimated service costs. Such a mechanism is shown to have lower variability in payments under fixed rate pricing and VCG auctions while generating the same long-term revenue as in a post-payment scheme, where users pay the exact charge accrued during their sojourn. Our formulation and techniques further the understanding of pricing mechanisms and decision-making for the operator

    Queue stability analysis in network coded wireless multicast.

    Get PDF
    In this dissertation queue stability in wireless multicast networks with packet erasure channels is studied. Our focus is on optimizing packet scheduling so as to maximize throughput. Specifically, new queuing strategies consisting of several sub-queues are introduced, where all newly arrived packets are first stored in the main sub-queue on a first-come-first-served basis. Using the receiver feedback, the transmitter combines packets from different sub-queues for transmission. Our objective is to maximize the input rate under the queue stability constraints. Two packet scheduling and encoding algorithms have been developed. First, the optimization problem is formulated as a linear programming (LP) problem, according to which a network coding based optimal packet scheduling scheme is obtained. Second, the Lyapunov optimization model is adopted and decision variables are defined to derive a network coding based packet scheduling algorithm, which has significantly less complexity and smaller queue backlog compared with the LP solution. Further, an extension of the proposed algorithm is derived to meet the requirements of time-critical data transmission, where each packet expires after a predefined deadline and then dropped from the system. To minimize the average transmission power, we further derive a scheduling policy that simultaneously minimizes both power and queue size, where the transmitter may choose to be idle to save energy consumption. Moreover, a redundancy in the schedules is inadvertently revealed by the algorithm. By detecting and removing the redundancy we further reduce the system complexity. Finally, the simulation results verify the effectiveness of our proposed algorithms over existing works

    Self-organized backpressure routing for the wireless mesh backhaul of small cells

    Get PDF
    The ever increasing demand for wireless data services has given a starring role to dense small cell (SC) deployments for mobile networks, as increasing frequency re-use by reducing cell size has historically been the most effective and simple way to increase capacity. Such densification entails challenges at the Transport Network Layer (TNL), which carries packets throughout the network, since hard-wired deployments of small cells prove to be cost-unfeasible and inflexible in some scenarios. The goal of this thesis is, precisely, to provide cost-effective and dynamic solutions for the TNL that drastically improve the performance of dense and semi-planned SC deployments. One approach to decrease costs and augment the dynamicity at the TNL is the creation of a wireless mesh backhaul amongst SCs to carry control and data plane traffic towards/from the core network. Unfortunately, these lowcost SC deployments preclude the use of current TNL routing approaches such as Multiprotocol Label Switching Traffic Profile (MPLS-TP), which was originally designed for hard-wired SC deployments. In particular, one of the main problems is that these schemes are unable to provide an even network resource consumption, which in wireless environments can lead to a substantial degradation of key network performance metrics for Mobile Network Operators. The equivalent of distributing load across resources in SC deployments is making better use of available paths, and so exploiting the capacity offered by the wireless mesh backhaul formed amongst SCs. To tackle such uneven consumption of network resources, this thesis presents the design, implementation, and extensive evaluation of a self-organized backpressure routing protocol explicitly designed for the wireless mesh backhaul formed amongst the wireless links of SCs. Whilst backpressure routing in theory promises throughput optimality, its implementation complexity introduces several concerns, such as scalability, large end-to-end latencies, and centralization of all the network state. To address these issues, we present a throughput suboptimal yet scalable, decentralized, low-overhead, and low-complexity backpressure routing scheme. More specifically, the contributions in this thesis can be summarized as follows: We formulate the routing problem for the wireless mesh backhaul from a stochastic network optimization perspective, and solve the network optimization problem using the Lyapunov-driftplus-penalty method. The Lyapunov drift refers to the difference of queue backlogs in the network between different time instants, whereas the penalty refers to the routing cost incurred by some network utility parameter to optimize. In our case, this parameter is based on minimizing the length of the path taken by packets to reach their intended destination. Rather than building routing tables, we leverage geolocation information as a key component to complement the minimization of the Lyapunov drift in a decentralized way. In fact, we observed that the combination of both components helps to mitigate backpressure limitations (e.g., scalability,centralization, and large end-to-end latencies). The drift-plus-penalty method uses a tunable optimization parameter that weight the relative importance of queue drift and routing cost. We find evidence that, in fact, this optimization parameter impacts the overall network performance. In light of this observation, we propose a self-organized controller based on locally available information and in the current packet being routed to tune such an optimization parameter under dynamic traffic demands. Thus, the goal of this heuristically built controller is to maintain the best trade-off between the Lyapunov drift and the penalty function to take into account the dynamic nature of semi-planned SC deployments. We propose low complexity heuristics to address problems that appear under different wireless mesh backhaul scenarios and conditions..

    Stable Wireless Network Control Under Service Constraints

    Full text link
    We consider the design of wireless queueing network control policies with particular focus on combining stability with additional application-dependent requirements. Thereby, we consequently pursue a cost function based approach that provides the flexibility to incorporate constraints and requirements of particular services or applications. As typical examples of such requirements, we consider the reduction of buffer underflows in case of streaming traffic, and energy efficiency in networks of battery powered nodes. Compared to the classical throughput optimal control problem, such requirements significantly complicate the control problem. We provide easily verifyable theoretical conditions for stability, and, additionally, compare various candidate cost functions applied to wireless networks with streaming media traffic. Moreover, we demonstrate how the framework can be applied to the problem of energy efficient routing, and we demonstrate the aplication of our framework in cross-layer control problems for wireless multihop networks, using an advanced power control scheme for interference mitigation, based on successive convex approximation. In all scenarios, the performance of our control framework is evaluated using extensive numerical simulations.Comment: Accepted for publication in IEEE Transactions on Control of Network Systems. arXiv admin note: text overlap with arXiv:1208.297

    Statistical Delay Bound for WirelessHART Networks

    Full text link
    In this paper we provide a performance analysis framework for wireless industrial networks by deriving a service curve and a bound on the delay violation probability. For this purpose we use the (min,x) stochastic network calculus as well as a recently presented recursive formula for an end-to-end delay bound of wireless heterogeneous networks. The derived results are mapped to WirelessHART networks used in process automation and were validated via simulations. In addition to WirelessHART, our results can be applied to any wireless network whose physical layer conforms the IEEE 802.15.4 standard, while its MAC protocol incorporates TDMA and channel hopping, like e.g. ISA100.11a or TSCH-based networks. The provided delay analysis is especially useful during the network design phase, offering further research potential towards optimal routing and power management in QoS-constrained wireless industrial networks.Comment: Accepted at PE-WASUN 201
    • …
    corecore