1,268 research outputs found

    A Multi-Modality Mobility Concept for a Small Package Delivery UAV

    Get PDF
    This paper will discuss a different approach to the typical notional small package delivery drone concept. Most delivery drone concepts employ a point-to-point aerial delivery CONOPS (Concept of Operations) from a warehouse directly to the front or back yards of a customers residence or a commercial office space. Instead, the proposed approach is somewhat analogous to current postal deliveries: a small aerial vehicle flies from a warehouse to designated neighborhood VTOL (Vertical Take-Off and Landing) landing spots where the aerial vehicle then converts to a "roadable" (ground-mobility) vehicle that then transits on sidewalks and/or bicycle paths till it arrives to the residence/office drop-off points. This concept and associated platform or vehicle will be referred in this paper as MICHAEL (Multimodal Intra-City Hauling and Aerial-Effected Logistics) concept. It is suggested that the MICHAEL concept potentially results in a more community friendly "delivery drone" approach

    A Mechatronics Vision for Smart Wheelchairs

    Get PDF

    Wheeled Mobile Robots: State of the Art Overview and Kinematic Comparison Among Three Omnidirectional Locomotion Strategies

    Get PDF
    In the last decades, mobile robotics has become a very interesting research topic in the feld of robotics, mainly because of population ageing and the recent pandemic emergency caused by Covid-19. Against this context, the paper presents an overview on wheeled mobile robot (WMR), which have a central role in nowadays scenario. In particular, the paper describes the most commonly adopted locomotion strategies, perception systems, control architectures and navigation approaches. After having analyzed the state of the art, this paper focuses on the kinematics of three omnidirectional platforms: a four mecanum wheels robot (4WD), a three omni wheel platform (3WD) and a two swerve-drive system (2SWD). Through a dimensionless approach, these three platforms are compared to understand how their mobility is afected by the wheel speed limitations that are present in every practical application. This original comparison has not been already presented by the literature and it can be used to improve our understanding of the kinematics of these mobile robots and to guide the selection of the most appropriate locomotion system according to the specifc application

    Mobile Robotics

    Get PDF
    The book is a collection of ten scholarly articles and reports of experiences and perceptions concerning pedagogical practices with mobile robotics.“This work is funded by CIEd – Research Centre on Education, project UID/CED/01661/2019, Institute of Education, University of Minho, through national funds of FCT/MCTES-PT.

    DEVELOPMENT AND EVALUATION OF AN ADVANCED REAL-TIME ELECTRICAL POWERED WHEELCHAIR CONTROLLER

    Get PDF
    Advances in Electric Powered Wheelchairs (EPW) have improved mobility for people with disabilities as well as older adults, and have enhanced their integration into society. Some of the issues still present in EPW lie in the difficulties when encountering different types of terrain, and access to higher or low surfaces. To this end, an advanced real-time electrical powered wheelchair controller was developed. The controller was comprised of a hardware platform with sensors measuring the speed of the driving, caster wheels and the acceleration, with a single board computer for implementing the control algorithms in real-time, a multi-layer software architecture, and modular design. A model based real-time speed and traction controller was developed and validated by simulation. The controller was then evaluated via driving over four different surfaces at three specified speeds. Experimental results showed that model based control performed best on all surfaces across the speeds compared to PID (proportional-integral-derivative) and Open Loop control. A real-time slip detection and traction control algorithm was further developed and evaluated by driving the EPW over five different surfaces at three speeds. Results showed that the performance of anti-slip control was consistent on the varying surfaces at different speeds. The controller was also tested on a front wheel drive EPW to evaluate a forwarding tipping detection and prevention algorithm. Experimental results showed that the tipping could be accurately detected as it was happening and the performance of the tipping prevention strategy was consistent on the slope across different speeds. A terrain-dependent EPW user assistance system was developed based on the controller. Driving rules for wet tile, gravel, slopes and grass were developed and validated by 10 people without physical disabilities. The controller was also adapted to the Personal Mobility and Manipulation Appliance (PerMMA) Generation II, which is an advanced power wheelchair with a flexible mobile base, allowing it to adjust the positions of each of the four casters and two driving wheels. Simulations of the PerMMA Gen II system showed that the mobile base controller was able to climb up to 8” curb and maintain passenger’s posture in a comfort position

    Cubular Corridors: Merging Vertical Urbanism with Accessibility Initiatives

    Full text link
    • …
    corecore