58 research outputs found

    A machine learning-based approach to optimize repair and increase yield of embedded flash memories in automotive systems-on-chip

    Get PDF
    Nowadays, Embedded Flash Memory cores occupy a significant portion of Automotive Systems-on-Chip area, therefore strongly contributing to the final yield of the devices. Redundancy strategies play a key role in this context; in case of memory failures, a set of spare word- and bit-lines are allocated by a replacement algorithm that complements the memory testing procedure. In this work, we show that replacement algorithms, which are heavily constrained in terms of execution time, may be slightly inaccurate and lead to classify a repairable memory core as unrepairable. We denote this situation as Flash memory false fail. The proposed approach aims at identifying false fails by using a Machine Learning approach that exploits a feature extraction strategy based on shape recognition. Experimental results carried out on the manufacturing data show a high capability of predicting false fails

    Security of Electrical, Optical and Wireless On-Chip Interconnects: A Survey

    Full text link
    The advancement of manufacturing technologies has enabled the integration of more intellectual property (IP) cores on the same system-on-chip (SoC). Scalable and high throughput on-chip communication architecture has become a vital component in today's SoCs. Diverse technologies such as electrical, wireless, optical, and hybrid are available for on-chip communication with different architectures supporting them. Security of the on-chip communication is crucial because exploiting any vulnerability would be a goldmine for an attacker. In this survey, we provide a comprehensive review of threat models, attacks, and countermeasures over diverse on-chip communication technologies as well as sophisticated architectures.Comment: 41 pages, 24 figures, 4 table

    Agent Based Test and Repair of Distributed Systems

    Get PDF
    This article demonstrates how to use intelligent agents for testing and repairing a distributed system, whose elements may or may not have embedded BIST (Built-In Self-Test) and BISR (Built-In Self-Repair) facilities. Agents are software modules that perform monitoring, diagnosis and repair of the faults. They form together a society whose members communicate, set goals and solve tasks. An experimental solution is presented, and future developments of the proposed approach are explored

    Concurrent Online Testing for Many Core Systems-on-Chips

    Get PDF
    Shrinking transistor sizes have introduced new challenges and opportunities for system-on-chip (SoC) design and reliability. Smaller transistors are more susceptible to early lifetime failure and electronic wear-out, greatly reducing their reliable lifetimes. However, smaller transistors will also allow SoC to contain hundreds of processing cores and other infrastructure components with the potential for increased reliability through massive structural redundancy. Concurrent online testing (COLT) can provide sufficient reliability and availability to systems with this redundancy. COLT manages the process of testing a subset of processing cores while the rest of the system remains operational. This can be considered a temporary, graceful degradation of system performance that increases reliability while maintaining availability. In this dissertation, techniques to assist COLT are proposed and analyzed. The techniques described in this dissertation focus on two major aspects of COLT feasibility: recovery time and test delivery costs. To reduce the time between failure and recovery, and thereby increase system availability, an anomaly-based test triggering unit (ATTU) is proposed to initiate COLT when anomalous network behavior is detected. Previous COLT techniques have relied on initiating tests periodically. However, determining the testing period is based on a device's mean time between failures (MTBF), and calculating MTBF is exceedingly difficult and imprecise. To address the test delivery costs associated with COLT, a distributed test vector storage (DTVS) technique is proposed to eliminate the dependency of test delivery costs on core location. Previous COLT techniques have relied on a single location to store test vectors, and it has been demonstrated that centralized storage of tests scales poorly as the number of cores per SoC grows. Assuming that the SoC organizes its processing cores with a regular topology, DTVS uses an interleaving technique to optimally distribute the test vectors across the entire chip. DTVS is analyzed both empirically and analytically, and a testing protocol using DTVS is described. COLT is only feasible if the applications running concurrently are largely unaffected. The effect of COLT on application execution time is also measured in this dissertation, and an application-aware COLT protocol is proposed and analyzed. Application interference is greatly reduced through this technique
    • …
    corecore