118 research outputs found

    Design of doubly-complementary IIR digital filters using a single complex allpass filter, with multirate applications

    Get PDF
    It is shown that a large class of real-coefficient doubly-complementary IIR transfer function pairs can be implemented by means of a single complex allpass filter. For a real input sequence, the real part of the output sequence corresponds to the output of one of the transfer functions G(z) (for example, lowpass), whereas the imaginary part of the output sequence corresponds to its "complementary" filter H(z)(for example, highpass). The resulting implementation is structurally lossless, and hence the implementations of G(z) and H(z) have very low passband sensitivity. Numerical design examples are included, and a typical numerical example shows that the new implementation with 4 bits per multiplier is considerably better than a direct form implementation with 9 bits per multiplier. Multirate filter bank applications (quadrature mirror filtering) are outlined

    Theory and design of M-channel maximally decimated quadrature mirror filters with arbitrary M, having the perfect-reconstruction property

    Get PDF
    Based on the concept of losslessness in digital filter structures, this paper derives a general class of maximally decimated M-channel quadrature mirror filter banks that lead to perfect reconstruction. The perfect-reconstruction property guarantees that the reconstructed signalhat{x} (n)is a delayed version of the input signal x (n), i.e.,hat{x} (n) = x (n - n_{0}). It is shown that such a property can be satisfied if the alias component matrix (AC matrix for short) is unitary on the unit circle of the z plane. The number of channels M is arbitrary, and when M is two, the results reduce to certain recently reported 2-channel perfect-reconstruction QMF structures. A procedure, based on recently reported FIR cascaded-lattice structures, is presented for optimal design of such FIR M-channel filter banks. Design examples are included

    Tree-structured complementary filter banks using all-pass sections

    Get PDF
    Tree-structured complementary filter banks are developed with transfer functions that are simultaneously all-pass complementary and power complementary. Using a formulation based on unitary transforms and all-pass functions, we obtain analysis and synthesis filter banks which are related through a transposition operation, such that the cascade of analysis and synthesis filter banks achieves an all-pass function. The simplest structure is obtained using a Hadamard transform, which is shown to correspond to a binary tree structure. Tree structures can be generated for a variety of other unitary transforms as well. In addition, given a tree-structured filter bank where the number of bands is a power of two, simple methods are developed to generate complementary filter banks with an arbitrary number of channels, which retain the transpose relationship between analysis and synthesis banks, and allow for any combination of bandwidths. The structural properties of the filter banks are illustrated with design examples, and multirate applications are outlined

    Passive cascaded-lattice structures for low-sensitivity FIR filter design, with applications to filter banks

    Get PDF
    A class of nonrecursive cascaded-lattice structures is derived, for the implementation of finite-impulse response (FIR) digital filters. The building blocks are lossless and the transfer function can be implemented as a sequence of planar rotations. The structures can be used for the synthesis of any scalar FIR transfer function H(z) with no restriction on the location of zeros; at the same time, all the lattice coefficients have magnitude bounded above by unity. The structures have excellent passband sensitivity because of inherent passivity, and are automatically internally scaled, in an L_2 sense. The ideas are also extended for the realization of a bank of MFIR transfer functions as a cascaded lattice. Applications of these structures in subband coding and in multirate signal processing are outlined. Numerical design examples are included

    Minimal structures for the implementation of digital rational lossless systems

    Get PDF
    Digital lossless transfer matrices and vectors (power-complementary vectors) are discussed for applications in digital filter bank systems, both single rate and multirate. Two structures for the implementation of rational lossless systems are presented. The first structure represents a characterization of single-input, multioutput lossless systems in terms of complex planar rotations, whereas the second structure offers a representation of M-input, M-output lossless systems in terms of unit-norm vectors. This property makes the second structure desirable in applications that involve optimization of the parameters. Modifications of the second structure for implementing single-input, multioutput, and lossless bounded real (LBR) systems are also included. The main importance of the structures is that they are completely general, i.e. they span the entire set of M×1 and M×M lossless systems. This is demonstrated by showing that any such system can be synthesized using these structures. The structures are also minimal in the sense that they use the smallest number of scalar delays and parameters to implement a lossless system of given degree and dimensions. A design example to demonstrate the main results is included

    Improved technique for design of perfect reconstruction FIR QMF banks with lossless polyphase matrices

    Get PDF
    A technique is developed for the design of analysis filters in an M-channel maximally decimated, perfect reconstruction, finite-impulse-response quadrature mirror filter (FIR QMF) bank that has a lossless polyphase-component matrix E(z). The aim is to optimize the parameters characterizing E(z) until the sum of the stopband energies of the analysis filters is minimized. There are four novel elements in the procedure reported here. The first is a technique for efficient initialization of one of the M analysis filters, as a spectral factor of an Mth band filter. The factorization itself is done in an efficient manner using the eigenfilters approach, without the need for root-finding techniques. The second element is the initialization of the internal parameters which characterize E(z), based on the above spectral factor. The third element is a modified characterization, mostly free from rotation angles, of the FIR E(z). The fourth is the incorporation of symmetry among the analysis filters, so as to minimize the number of unknown parameters being optimized. The resulting design procedure always gives better filter responses than earlier ones (for a given filter length) and converges much faste

    Multirate digital filters, filter banks, polyphase networks, and applications: a tutorial

    Get PDF
    Multirate digital filters and filter banks find application in communications, speech processing, image compression, antenna systems, analog voice privacy systems, and in the digital audio industry. During the last several years there has been substantial progress in multirate system research. This includes design of decimation and interpolation filters, analysis/synthesis filter banks (also called quadrature mirror filters, or QMFJ, and the development of new sampling theorems. First, the basic concepts and building blocks in multirate digital signal processing (DSPJ, including the digital polyphase representation, are reviewed. Next, recent progress as reported by several authors in this area is discussed. Several applications are described, including the following: subband coding of waveforms, voice privacy systems, integral and fractional sampling rate conversion (such as in digital audio), digital crossover networks, and multirate coding of narrow-band filter coefficients. The M-band QMF bank is discussed in considerable detail, including an analysis of various errors and imperfections. Recent techniques for perfect signal reconstruction in such systems are reviewed. The connection between QMF banks and other related topics, such as block digital filtering and periodically time-varying systems, based on a pseudo-circulant matrix framework, is covered. Unconventional applications of the polyphase concept are discussed
    corecore