5,989 research outputs found

    Fuzzy second order sliding mode control of a unified power flow controller

    Get PDF
    Purpose. This paper presents an advanced control scheme based on fuzzy logic and second order sliding mode of a unified power flow controller. This controller offers advantages in terms of static and dynamic operation of the power system such as the control law is synthesized using three types of controllers: proportional integral, and sliding mode controller and Fuzzy logic second order sliding mode controller. Their respective performances are compared in terms of reference tracking, sensitivity to perturbations and robustness. We have to study the problem of controlling power in electric system by UPFC. The simulation results show the effectiveness of the proposed method especiallyin chattering-free behavior, response to sudden load variations and robustness. All the simulations for the above work have been carried out using MATLAB / Simulink. Various simulations have given very satisfactory results and we have successfully improved the real and reactive power flows on a transmission lineas well as to regulate voltage at the bus where it is connected, the studies and illustrate the effectiveness and capability of UPFC in improving power.В настоящей статье представлена усовершенствованная схема управления, основанная на нечеткой логике и режиме скольжения второго порядка унифицированного контроллера потока мощности. Данный контроллер обладает преимуществами с точки зрения статической и динамической работы энергосистемы, например, закон управления синтезируется с использованием трех типов контроллеров: пропорционально-интегрального, контроллера скользящего режима и контроллера скользящего режима нечеткой логики второго порядка. Их соответствующие характеристики сравниваются с точки зрения отслеживания эталонов, чувствительности к возмущениям и надежности. Необходимо изучить проблему управления мощностью в энергосистеме с помощью унифицированного контроллера потока мощности (UPFC). Результаты моделирования показывают эффективность предложенного метода, особенно в отношении отсутствия вибрации, реакции на внезапные изменения нагрузки и устойчивости. Все расчеты для вышеуказанной работы были выполнены с использованием MATLAB/Simulink. Различные расчетные исследования дали весьма удовлетворительные результаты, и мы успешно улучшили потоки реальной и реактивной мощности на линии электропередачи, а также регулирование напряжения на шине, к которой она подключена, что позволяет изучить и проиллюстрировать эффективность и возможности UPFC для увеличения мощности

    Design of an Adaptive Neurofuzzy Inference Control System for the Unified Power-Flow Controller

    Get PDF
    This paper presents a new approach to control the operation of the unified power-flow controller (UPFC) based on the adaptive neurofuzzy inference controller (ANFIC) concept. The training data for the controller are extracted from an analytical model of the transmission system incorporating a UPFC. The operating points' space is dynamically partitioned into two regions: 1) an inner region where the desired operating point can be achieved without violating any of the UPFC constraints and 2) an outer region where it is necessary to operate the UPFC beyond its limits. The controller is designed to achieve the most appropriate operating point based on the real power priority. In this study, the authors investigated and analyzed the effect of the system short-circuit level on the UPFC operating feasible region which defines the limitation of its parameters. In order to illustrate the effectiveness of the control algorithm, simulation and experimental studies have been conducted using the MATLAB/SIMULINK and dSPACE DS1103 data-acquisition board. The obtained results show a clear agreement between simulation and experimental results which verify the effective performance of the ANFIC controller

    Unbalanced load flow with hybrid wavelet transform and support vector machine based Error-Correcting Output Codes for power quality disturbances classification including wind energy

    Get PDF
    Purpose. The most common methods to designa multiclass classification consist to determine a set of binary classifiers and to combine them. In this paper support vector machine with Error-Correcting Output Codes (ECOC-SVM) classifier is proposed to classify and characterize the power qualitydisturbances such as harmonic distortion,voltage sag, and voltage swell include wind farms generator in power transmission systems. Firstly three phases unbalanced load flow analysis is executed to calculate difference electric network characteristics, levels of voltage, active and reactive power. After, discrete wavelet transform is combined with the probabilistic ECOC-SVM model to construct the classifier. Finally, the ECOC-SVM classifies and identifies the disturbance type according tothe energy deviation of the discrete wavelet transform. The proposedmethod gives satisfactory accuracy with 99.2% compared with well known methods and shows that each power quality disturbances has specific deviations from the pure sinusoidal waveform,this is good at recognizing and specifies the type of disturbance generated from the wind power generator.Наиболее распространенные методы построения мультиклассовой классификации заключаются в определении набора двоичных классификаторов и их объединении. В данной статье предложена машина опорных векторов с классификатором выходных кодов исправления ошибок(ECOC-SVM) с целью классифицировать и характеризовать такие нарушения качества электроэнергии, как гармонические искажения, падение напряжения и скачок напряжения, включая генератор ветровых электростанций в системах передачи электроэнергии. Сначала выполняется анализ потока несимметричной нагрузки трех фаз для расчета разностных характеристик электрической сети, уровней напряжения, активной и реактивной мощности. После этого дискретное вейвлет-преобразование объединяется с вероятностной моделью ECOC-SVM для построения классификатора. Наконец, ECOC-SVM классифицирует и идентифицирует тип возмущения в соответствии с отклонением энергии дискретного вейвлет-преобразования. Предложенный метод дает удовлетворительную точность 99,2% по сравнению с хорошо известными методами и показывает, что каждое нарушение качества электроэнергии имеет определенные отклонения от чисто синусоидальной формы волны, что способствует распознаванию и определению типа возмущения, генерируемого ветровым генератором

    Neem oil as biopesticides

    Get PDF
    Agricultural biotechnology is a wide logical method used to improve plants, animals, and microorganisms. The biotechnology cycle in the agricultural segment incorporates improving the harvests, living things, and microorganism's quality and resistibility by hereditary adjustment. Other than that, biotechnology in agriculture additionally known from the utilization of more secure natural sources to create an item that will be ready to ensure and build the creation of yields and domesticated animals, for example, manure and biopesticides. The World Health Organization (WHO) likewise had reported that the synthetic based pesticides would arrive at their constraints of utilization as it loses their adequacy after some time. This can be shown by the disclosure of pesticides obstruction bugs. The neem plant was accounted for as the top rundown spices that can possibly go about as a biopesticide; this is because of the presence of various dynamic mixes known as limonoids. The significant compound is the azadirachtin which assumes an essential job as bug sprays, and it executes the focused-on bugs by troubling their development and generative system. The neem oil biopesticides additionally are less harmful towards living beings and less contamination toward nature. In this way, the neem removed biopesticides are presently popularized and have been sold and utilized in different nations

    Intelligent STATCOM Voltage Regulation using Fuzzy Logic Control

    Get PDF
    Reactive power compensation is a very important and challenging task in electrical power systems today. Future trends foreseen in power systems such as high interconnectivity and the integration of renewable energy resources produce even more issues related to power system control and stability. Flexible AC transmission systems are vastly used in power systems in order to mitigate several performance aspects found in typical power systems. One shunt connected device in particular, STATCOM, is very powerful and commonly used in voltage regulation at the power transmission level. STATCOM uses voltage sourced converters to inject or absorb reactive power from the power grid as commanded to stabilize the transmission line voltage at the point of connection. The control of STATCOM has relied historically on using traditional PI controllers, however, since the dynamic response of STATCOM highly affects its ability to perform its task, improving the capabilities of STATCOM using more advanced control approaches has become vital for both manufacturers and power systems operators. Fuzzy logic control, as one area of artificial intelligence techniques, has been emerging in recent years as a complement to the conventional methods in various areas of power systems control. The most significant advantage of fuzzy controller as an intelligent controller is that it doesn’t require mathematical modelling. It is robust and nonlinear in its nature, and expert’s knowledge can be utilized in generating control rules. The main contribution is to use fuzzy logic control theory to design a pure fuzzy logic control and another fuzzy adaptive PI control strategies for STATCOM that are superior in performance to traditional PI control approach. This will increase STATCOM’s ability to seamlessly perform their task in voltage regulation. This work investigates the performance of classical PI controlled STATCOM then compares it with fuzzy logic based STATCOM and fuzzy adaptive PI controlled STATCOM. Simulations done using MATLAB on a three generator test system show that adaptive fuzzy PI control technique is faster in responding to voltage variations and better in tracking the reactive current reference. Results also show that a direct control using fuzzy logic provides even faster voltage regulation and acts almost as a perfect tracker for reference reactive current

    Fuzzified Single Phase Automatic Sequential Reactive Power Compensation with Minimized Switches

    Get PDF
    The current rapid growth in IoT technology facilitates the effortless implementation of bidirectional remote monitoring and control system implementation in homes and buildings. We have modeled an actual non-intrusive PnP sequential SVC prototype hardware and wireless FLC automation software design on a real single phase home appliances system as load modeling. In addition, we have also designed a novel Unidirectional MOSFET Switched Capasitor model (UniMosSC) which enables us to reduce the hardware cost and increase the life span of SVC due it uses minimum switching devices. The system we have designed is able to correct the power factor at the root of the problem at each appliance. Due to complexity of appliance clustering and overlapping clusters, we implemented fuzziness in the system for more reliability in computations. The system could be used in homes or buildings resulting in electricity bill reduction, saving dollars and cents

    Analysis and robust decentralized control of power systems using FACTS devices

    Get PDF
    Today\u27s changing electric power systems create a growing need for flexible, reliable, fast responding, and accurate answers to questions of analysis, simulation, and design in the fields of electric power generation, transmission, distribution, and consumption. The Flexible Alternating Current Transmission Systems (FACTS) technology program utilizes power electronics components to replace conventional mechanical elements yielding increased flexibility in controlling the electric power system. Benefits include decreased response times and improved overall dynamic system behavior. FACTS devices allow the design of new control strategies, e.g., independent control of active and reactive power flows, which were not realizable a decade ago. However, FACTS components also create uncertainties. Besides the choice of the FACTS devices available, decisions concerning the location, rating, and operating scheme must be made. All of them require reliable numerical tools with appropriate stability, accuracy, and validity of results. This dissertation develops methods to model and control electric power systems including FACTS devices on the transmission level as well as the application of the software tools created to simulate, analyze, and improve the transient stability of electric power systems.;The Power Analysis Toolbox (PAT) developed is embedded in the MATLAB/Simulink environment. The toolbox provides numerous models for the different components of a power system and utilizes an advanced data structure that not only increases data organization and transparency but also simplifies the efforts necessary to incorporate new elements. The functions provided facilitate the computation of steady-state solutions and perform steady-state voltage stability analysis, nonlinear dynamic studies, as well as linearization around a chosen operating point.;Applying intelligent control design in the form of a fuzzy power system damping scheme applied to the Unified Power Flow Controller (UPFC) is proposed. Supplementary damping signals are generated based on local active power flow measurements guaranteeing feasibility. The effectiveness of this controller for longitudinal power systems under dynamic conditions is shown using a Two Area - Four Machine system. When large disturbances are applied, simulation results show that this design can enhance power system operation and damping characteristics. Investigations of meshed power systems such as the New England - New York power system are performed to gain further insight into adverse controller effects

    IMPROVEMENT OF POWER QUALITY OF HYBRID GRID BY NON-LINEAR CONTROLLED DEVICE CONSIDERING TIME DELAYS AND CYBER-ATTACKS

    Get PDF
    Power Quality is defined as the ability of electrical grid to supply a clean and stable power supply. Steady-state disturbances such as harmonics, faults, voltage sags and swells, etc., deteriorate the power quality of the grid. To ensure constant voltage and frequency to consumers, power quality should be improved and maintained at a desired level. Although several methods are available to improve the power quality in traditional power grids, significant challenges exist in modern power grids, such as non-linearity, time delay and cyber-attacks issues, which need to be considered and solved. This dissertation proposes novel control methods to address the mentioned challenges and thus to improve the power quality of modern hybrid grids.In hybrid grids, the first issue is faults occurring at different points in the system. To overcome this issue, this dissertation proposes non-linear controlled methods like the Fuzzy Logic controlled Thyristor Switched Capacitor (TSC), Adaptive Neuro Fuzzy Inference System (ANFIS) controlled TSC, and Static Non-Linear controlled TSC. The next issue is the time delay introduced in the network due to its complexities and various computations required. This dissertation proposes two new methods such as the Fuzzy Logic Controller and Modified Predictor to minimize adverse effects of time delays on the power quality enhancement. The last and major issue is the cyber-security aspect of the hybrid grid. This research analyzes the effects of cyber-attacks on various components such as the Energy Storage System (ESS), the automatic voltage regulator (AVR) of the synchronous generator, the grid side converter (GSC) of the wind generator, and the voltage source converter (VSC) of Photovoltaic (PV) system, located in a hybrid power grid. Also, this dissertation proposes two new techniques such as a Non-Linear (NL) controller and a Proportional-Integral (PI) controller for mitigating the adverse effects of cyber-attacks on the mentioned devices, and a new detection and mitigation technique based on the voltage threshold for the Supercapacitor Energy System (SES). Simulation results obtained through the MATLAB/Simulink software show the effectiveness of the proposed new control methods for power quality improvement. Also, the proposed methods perform better than conventional methods
    corecore