112 research outputs found

    Analysis of sources of large positioning errors in deterministic fingerprinting

    Get PDF
    Wi-Fi fingerprinting is widely used for indoor positioning and indoor navigation due to the ubiquity of wireless networks, high proliferation of Wi-Fi-enabled mobile devices, and its reasonable positioning accuracy. The assumption is that the position can be estimated based on the received signal strength intensity from multiple wireless access points at a given point. The positioning accuracy, within a few meters, enables the use of Wi-Fi fingerprinting in many different applications. However, it has been detected that the positioning error might be very large in a few cases, which might prevent its use in applications with high accuracy positioning requirements. Hybrid methods are the new trend in indoor positioning since they benefit from multiple diverse technologies (Wi-Fi, Bluetooth, and Inertial Sensors, among many others) and, therefore, they can provide a more robust positioning accuracy. In order to have an optimal combination of technologies, it is crucial to identify when large errors occur and prevent the use of extremely bad positioning estimations in hybrid algorithms. This paper investigates why large positioning errors occur in Wi-Fi fingerprinting and how to detect them by using the received signal strength intensities.This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT-Fundação para a Ciência e Tecnologia within the scope of project UID/CEC/00319/2013, by the Portugal Incentive System for Research and Technological Development in the scope of the projects in co-promotion no 002814/2015 (iFACTORY 2015-2018)info:eu-repo/semantics/publishedVersio

    Hybrid analog-digital processing system for amplitude-monopulse RSSI-based MiMo wifi direction-of-arrival estimation

    Get PDF
    We present a cost-effective hybrid analog digital system to estimate the Direction of Arrival (DoA) of WiFi signals. The processing in the analog domain is based on simple wellknown RADAR amplitude monopulse antenna techniques. Then, using the RSSI (Received Signal Strength Indicator) delivered by commercial MiMo WiFi cards, the DoA is estimated using the socalled digital monopulse function. Due to the hybrid analog digital architecture, the digital processing is extremely simple, so that DoA estimation is performed without using IQ data from specific hardware. The simplicity and robustness of the proposed hybrid analog digital MiMo architecture is demonstrated for the ISM 2.45GHz WiFi band. Also, the limitations with respect to multipath effects are studied in detail. As a proof of concept, an array of two MiMo WiFi DoA monopulse readers are distributed to localize the two-dimensional position of WiFi devices. This costeffective hybrid solution can be applied to all WiFi standards and other IoT narrowband radio protocols, such us Bluetooth Low Energy or Zigbee.This work was supported in part by the Spanish National Projects TEC2016-75934-C4-4-R, TEC2016-76465-C2-1-R and in part by Regional Seneca Project 19494/PI/14

    Data-driven design of intelligent wireless networks: an overview and tutorial

    Get PDF
    Data science or "data-driven research" is a research approach that uses real-life data to gain insight about the behavior of systems. It enables the analysis of small, simple as well as large and more complex systems in order to assess whether they function according to the intended design and as seen in simulation. Data science approaches have been successfully applied to analyze networked interactions in several research areas such as large-scale social networks, advanced business and healthcare processes. Wireless networks can exhibit unpredictable interactions between algorithms from multiple protocol layers, interactions between multiple devices, and hardware specific influences. These interactions can lead to a difference between real-world functioning and design time functioning. Data science methods can help to detect the actual behavior and possibly help to correct it. Data science is increasingly used in wireless research. To support data-driven research in wireless networks, this paper illustrates the step-by-step methodology that has to be applied to extract knowledge from raw data traces. To this end, the paper (i) clarifies when, why and how to use data science in wireless network research; (ii) provides a generic framework for applying data science in wireless networks; (iii) gives an overview of existing research papers that utilized data science approaches in wireless networks; (iv) illustrates the overall knowledge discovery process through an extensive example in which device types are identified based on their traffic patterns; (v) provides the reader the necessary datasets and scripts to go through the tutorial steps themselves

    A Review of Indoor Millimeter Wave Device-based Localization and Device-free Sensing Technologies and Applications

    Full text link
    The commercial availability of low-cost millimeter wave (mmWave) communication and radar devices is starting to improve the penetration of such technologies in consumer markets, paving the way for large-scale and dense deployments in fifth-generation (5G)-and-beyond as well as 6G networks. At the same time, pervasive mmWave access will enable device localization and device-free sensing with unprecedented accuracy, especially with respect to sub-6 GHz commercial-grade devices. This paper surveys the state of the art in device-based localization and device-free sensing using mmWave communication and radar devices, with a focus on indoor deployments. We first overview key concepts about mmWave signal propagation and system design. Then, we provide a detailed account of approaches and algorithms for localization and sensing enabled by mmWaves. We consider several dimensions in our analysis, including the main objectives, techniques, and performance of each work, whether each research reached some degree of implementation, and which hardware platforms were used for this purpose. We conclude by discussing that better algorithms for consumer-grade devices, data fusion methods for dense deployments, as well as an educated application of machine learning methods are promising, relevant and timely research directions.Comment: 43 pages, 13 figures. Accepted in IEEE Communications Surveys & Tutorials (IEEE COMST

    Opportunistic timing signals for pervasive mobile localization

    Get PDF
    Mención Internacional en el título de doctorThe proliferation of handheld devices and the pressing need of location-based services call for precise and accurate ubiquitous geographic mobile positioning that can serve a vast set of devices. Despite the large investments and efforts in academic and industrial communities, a pin-point solution is however still far from reality. Mobile devices mainly rely on Global Navigation Satellite System (GNSS) to position themselves. GNSS systems are known to perform poorly in dense urban areas and indoor environments, where the visibility of GNSS satellites is reduced drastically. In order to ensure interoperability between the technologies used indoor and outdoor, a pervasive positioning system should still rely on GNSS, yet complemented with technologies that can guarantee reliable radio signals in indoor scenarios. The key fact that we exploit is that GNSS signals are made of data with timing information. We then investigate solutions where opportunistic timing signals can be extracted out of terrestrial technologies. These signals can then be used as additional inputs of the multi-lateration problem. Thus, we design and investigate a hybrid system that combines range measurements from the Global Positioning System (GPS), the world’s most utilized GNSS system, and terrestrial technologies; the most suitable one to consider in our investigation is WiFi, thanks to its large deployment in indoor areas. In this context, we first start investigating standalone WiFi Time-of-flight (ToF)-based localization. Time-of-flight echo techniques have been recently suggested for ranging mobile devices overWiFi radios. However, these techniques have yielded only moderate accuracy in indoor environments because WiFi ToF measurements suffer from extensive device-related noise which makes it challenging to differentiate between direct path from non-direct path signal components when estimating the ranges. Existing multipath mitigation techniques tend to fail at identifying the direct path when the device-related Gaussian noise is in the same order of magnitude, or larger than the multipath noise. In order to address this challenge, we propose a new method for filtering ranging measurements that is better suited for the inherent large noise as found in WiFi radios. Our technique combines statistical learning and robust statistics in a single filter. The filter is lightweight in the sense that it does not require specialized hardware, the intervention of the user, or cumbersome on-site manual calibration. This makes the method we propose as the first contribution of the present work particularly suitable for indoor localization in large-scale deployments using existing legacy WiFi infrastructures. We evaluate our technique for indoor mobile tracking scenarios in multipath environments, and, through extensive evaluations across four different testbeds covering areas up to 1000m2, the filter is able to achieve a median ranging error between 1:7 and 2:4 meters. The next step we envisioned towards preparing theoretical and practical basis for the aforementioned hybrid positioning system is a deep inspection and investigation of WiFi and GPS ToF ranges, and initial foundations of single-technology self-localization. Self-localization systems based on the Time-of-Flight of radio signals are highly susceptible to noise and their performance therefore heavily rely on the design and parametrization of robust algorithms. We study the noise sources of GPS and WiFi ToF ranging techniques and compare the performance of different selfpositioning algorithms at a mobile node using those ranges. Our results show that the localization error varies greatly depending on the ranging technology, algorithm selection, and appropriate tuning of the algorithms. We characterize the localization error using real-world measurements and different parameter settings to provide guidance for the design of robust location estimators in realistic settings. These tools and foundations are necessary to tackle the problem of hybrid positioning system providing high localization capabilities across indoor and outdoor environments. In this context, the lack of a single positioning system that is able the fulfill the specific requirements of diverse indoor and outdoor applications settings has led the development of a multitude of localization technologies. Existing mobile devices such as smartphones therefore commonly rely on a multi-RAT (Radio Access Technology) architecture to provide pervasive location information in various environmental contexts as the user is moving. Yet, existing multi-RAT architectures consider the different localization technologies as monolithic entities and choose the final navigation position from the RAT that is foreseen to provide the highest accuracy in the particular context. In contrast, we propose in this work to fuse timing range (Time-of-Flight) measurements of diverse radio technologies in order to circumvent the limitations of the individual radio access technologies and improve the overall localization accuracy in different contexts. We introduce an Extended Kalman filter, modeling the unique noise sources of each ranging technology. As a rich set of multiple ranges can be available across different RATs, the intelligent selection of the subset of ranges with accurate timing information is critical to achieve the best positioning accuracy. We introduce a novel geometrical-statistical approach to best fuse the set of timing ranging measurements. We also address practical problems of the design space, such as removal of WiFi chipset and environmental calibration to make the positioning system as autonomous as possible. Experimental results show that our solution considerably outperforms the use of monolithic technologies and methods based on classical fault detection and identification typically applied in standalone GPS technology. All the contributions and research questions described previously in localization and positioning related topics suppose full knowledge of the anchors positions. In the last part of this work, we study the problem of deriving proximity metrics without any prior knowledge of the positions of the WiFi access points based on WiFi fingerprints, that is, tuples of WiFi Access Points (AP) and respective received signal strength indicator (RSSI) values. Applications that benefit from proximity metrics are movement estimation of a single node over time, WiFi fingerprint matching for localization systems and attacks on privacy. Using a large-scale, real-world WiFi fingerprint data set consisting of 200,000 fingerprints resulting from a large deployment of wearable WiFi sensors, we show that metrics from related work perform poorly on real-world data. We analyze the cause for this poor performance, and show that imperfect observations of APs with commodity WiFi clients in the neighborhood are the root cause. We then propose improved metrics to provide such proximity estimates, without requiring knowledge of location for the observed AP. We address the challenge of imperfect observations of APs in the design of these improved metrics. Our metrics allow to derive a relative distance estimate based on two observed WiFi fingerprints. We demonstrate that their performance is superior to the related work metrics.This work has been supported by IMDEA Networks InstitutePrograma Oficial de Doctorado en Ingeniería TelemáticaPresidente: Francisco Barceló Arroyo.- Secretario: Paolo Casari.- Vocal: Marco Fior

    ROLAX: LOCATION DETERMINATION TECHNIQUES IN 4G NETWORKS

    Get PDF
    In this dissertation, ROLAX location determination system in 4G networks is presented. ROLAX provides two primary solutions for the location determination in the 4G networks. First, it provides techniques to detect the error-prone wireless conditions in geometric approaches of Time of Arrival (ToA) and Time Difference of Arrival (TDoA). ROLAX provides techniques for a Mobile Station (MS) to determine the Dominant Line-of-Sight Path (DLP) condition given the measurements of the downlink signals from the Base Station (BS). Second, robust RF fingerprinting techniques for the 4G networks are designed. The causes for the signal measurement variation are identified, and the system is designed taking those into account, leading to a significant improvement in accuracy. ROLAX is organized in two phases: offline and online phases. During the offline phase, the radiomap is constructed by wardriving. In order to provide the portability of the techniques, standard radio measurements such as Received Signal Strength Indication (RSSI) and Carrier to Interference Noise Ratio(CINR) are used in constructing the radiomap. During the online phase, a MS performs the DLP condition test for each BS it can observe. If the number of the BSs under DLP is small, the MS attempts to determine its location by using the RF fingerprinting. In ROLAX, the DLP condition is determined from the RSSI, CINR, and RTD (Round Trip Delay) measurements. Features generated from the RSSI difference between two antennas of the MS were also used. The features, including the variance, the level crossing rate, the correlation between the RSSI and RTD, and Kullback-Leibler Divergence, were successfully used in detecting the DLP condition. We note that, compared to using a single feature, appropriately combined multiple features lead to a very accurate DLP condition detection. A number of pattern matching techniques are evaluated for the purpose of the DLP condition detection. Artificial neural networks, instance-based learning, and Rotation Forest are particularly used in the DLP detection. When the Rotation Forest is used, a detection accuracy of 94.8\% was achieved in the live 4G networks. It has been noted that features designed in the DLP detection can be useful in the RF fingerprinting. In ROLAX, in addition to the DLP detection features, mean of RSSI and mean of CINR are used to create unique RF fingerprints. ROLAX RF fingerprinting techniques include: (1) a number of gridding techniques, including overlapped gridding; (2) an automatic radiomap generation technique by the Delaunay triangulation-based interpolation; (3) the filtering of measurements based upon the power-capture relationship between BSs; and (4) algorithms dealing with the missing data. In this work, software was developed using the interfaces provided by Beceem/Broadcom chip-set based software. Signals were collected from both the home network (MAXWell 4G network) and the foreign network (Clear 4G network). By combining the techniques in ROLAX, a distance error in the order of 4 meters was achieved in the live 4G networks

    Design of Indoor Positioning Systems Based on Location Fingerprinting Technique

    Get PDF
    Positioning systems enable location-awareness for mobile computers in ubiquitous and pervasive wireless computing. By utilizing location information, location-aware computers can render location-based services possible for mobile users. Indoor positioning systems based on location fingerprints of wireless local area networks have been suggested as a viable solution where the global positioning system does not work well. Instead of depending on accurate estimations of angle or distance in order to derive the location with geometry, the fingerprinting technique associates location-dependent characteristics such as received signal strength to a location and uses these characteristics to infer the location. The advantage of this technique is that it is simple to deploy with no specialized hardware required at the mobile station except the wireless network interface card. Any existing wireless local area network infrastructure can be reused for this kind of positioning system. While empirical results and performance studies of such positioning systems are presented in the literature, analytical models that can be used as a framework for efficiently designing the positioning systems are not available. This dissertation develops an analytical model as a design tool and recommends a design guideline for such positioning systems in order to expedite the deployment process. A system designer can use this framework to strike a balance between the accuracy, the precision, the location granularity, the number of access points, and the location spacing. A systematic study is used to analyze the location fingerprint and discover its unique properties. The location fingerprint based on the received signal strength is investigated. Both deterministic and probabilistic approaches of location fingerprint representations are considered. The main objectives of this work are to predict the performance of such systems using a suitable model and perform sensitivity analyses that are useful for selecting proper system parameters such as number of access points and minimum spacing between any two different locations

    Sensors and Systems for Indoor Positioning

    Get PDF
    This reprint is a reprint of the articles that appeared in Sensors' (MDPI) Special Issue on “Sensors and Systems for Indoor Positioning". The published original contributions focused on systems and technologies to enable indoor applications
    corecore