278 research outputs found

    Study on Control Methodology of Compliant Manipulation Utilizing Additional Contact with Environment

    Get PDF
    制度:新 ; 報告番号:甲3297号 ; 学位の種類:博士(工学) ; 授与年月日:2011/2/25 ; 早大学位記番号:新560

    The design, analysis and evaluation of a humanoid robotic head

    Get PDF
    Where robots interact directly with humans on a ‘one-to-one’ basis, it is often quite important for them to be emotionally acceptable, hence the growing interesting in humanoid robots. In some applications it is important that these robots do not just resemble a human being in appearance, but also move like a human being too, to make them emotionally acceptable – hence the interest in biomimetic humanoid robotics. The research described in this thesis is concerned with the design, analysis and evaluation of a biomimetic humanoid robotic head. It is biomimetic in terms of physical design - which is based around a simulated cervical spine, and actuation, which is achieved using pneumatic air muscles (PAMS). The primary purpose of the research, however, and the main original contribution, was to create a humanoid robotic head capable of mimicking complex non-purely rotational human head movements. These include a sliding front-to-back, lateral movement, and a sliding, side-to-side lateral movement. A number of different approaches were considered and evaluated, before finalising the design. As there are no generally accepted metrics in the literature regarding the full range of human head movements, the best benchmarks for comparison are the angular ranges and speeds of humans in terms on pitch (nod), roll (tilt) and yaw (rotate) were used for comparison, and these they were considered desired ranges for the robot. These measured up well in comparison in terms of angular speed and some aspects of range of human necks. Additionally, the lateral movements were measured during the nod, tilt and rotate movements, and established the ability of the robot to perform the complex lateral movements seen in humans, thus proving the benefits of the cervical spine approach. Finally, the emotional acceptance of the robot movements was evaluated against another (commercially made) robot and a human. This was a blind test, in that the (human) evaluators had no way of knowing whether they were evaluation a human or a robot. The tests demonstrated that on scales of Fake/Natural, Machinelike/Humanlike and Unconcsious/Conscious the robot the robot scored similarly to the human

    The programmable spring: towards physical emulators of mechanical systems

    Get PDF
    The way motion is generated and controlled in robotics has traditionally been based on a philosophy of rigidity, where movements are tightly controlled and external influences are ironed out. More recent research into autonomous robots, biological actuation and human machine interaction has uncovered the value of compliant mechanisms in both aiding the production of effective, adaptive and efficient behaviour, and increasing the margins for safety in machines that operate alongside people. Various actuation methods have previously been proposed that allow robotic systems to exploit rather than avoid the influences of external perturbations, but many of these devices can be complex and costly to engineer, and are often task specific. This thesis documents the development of a general purpose modular actuator that can emulate the behaviour of various spring damping systems. It builds on some of the work done to produce reliable force controlled electronic actuators by developing a low cost implementation of an existing force actuator, and combining it with a novel high level control structure running in software on an embedded microcontroller. The actuator hardware with its embedded software results in a compact modular device capable of approximating the behaviour of various mechanical systems and actuation devices. Specifying these behaviours is achieved with an intuitive user interface and a control system based on a concept called profile groups. Profile group configurations that specify complex mechanical behaviours can be rapidly designed and the resulting configurations downloaded for a device to emulate. The novel control system and intuitive user interface developed to facilitate the rapid prototyping of mechanical behaviours are explained in detail. Two prototype devices are demonstrated emulating a number of mechanical systems and the results are compared to mechanical counterparts. Performance issues are discussed and some solutions proposed alongside general improvements to the control system. The applications beyond robotics are also explored

    Control of legged locomotion using dynamical systems:design methods and adaptive frequency oscillators

    Get PDF
    Legged robots have gained an increased attention these past decades since they offer a promising technology for many applications in unstructured environments where the use of wheeled robots is clearly limited. Such applications include exploration and rescue tasks where human intervention is difficult (e.g. after a natural disaster) or impossible (e.g. on radioactive sites) and the emerging domain of assistive robotics where robots should be able to meaningfully and efficiently interact with humans in their environment (e.g. climbing stairs). Moreover the technology developed for walking machines can help designing new rehabilitation devices for disabled persons such as active prostheses. However the control of agile legged locomotion is a challenging problem that is not yet solved in a satisfactory manner. By taking inspiration from the neural control of locomotion in animals, we develop in this thesis controllers for legged locomotion. These controllers are based on the concept of Central Pattern Generators (CPGs), which are neural networks located in the spine of vertebrates that generate the rhythmic patterns that control locomotion. The use of a strong mathematical framework, namely dynamical systems theory, allows one to build general design methodologies for such controllers. The original contributions of this thesis are organized along three main axes. The first one is a work on biological locomotion and more specifically on crawling human infants. Comparisons of the detailed kinematics and gait pattern of crawling infants with those of other quadruped mammals show many similarities. This is quite surprising since infant morphology is not well suited for quadruped locomotion. In a second part, we use some of these findings as an inspiration for the design of our locomotion controllers. We try to provide a systematic design methodology for CPGs. Specifically we design an oscillator to independently control the swing and stance durations during locomotion, then using insights from dynamical systems theory we construct generic networks supporting different gaits and finally we integrate sensory feedback in the system. Experiments on three different simulated quadruped robots show the effectiveness of the approach. The third axis of research focus on dynamical systems theory and more specifically on the development of an adaptive mechanism for oscillators such that they can learn the frequency of any periodic signal. Interestingly this mechanism is generic enough to work with a large class of oscillators. Extensive mathematical analysis are provided in order to understand the fundamental properties of this mechanism. Then an extension to pools of adaptive frequency oscillators with a negative feedback loop is used to build programmable CPGs (i.e. CPGs that can encode any periodic pattern as a structurally stable limit cycle). We use the system to control the locomotion of a humanoid robot. We also show applications of this system to signal processing

    Design and development of a hominid robot with local control in its adaptable feet to enhance locomotion capabilities

    Get PDF
    With increasing mechanization of our daily lives, the expectations and demands in robotic systems increase in the general public and in scientists alike. In recent events such as the Deepwater Horizon''-accident or the nuclear disaster at Fukushima, mobile robotic systems were used, e.g., to support local task forces by gaining visual material to allow an analysis of the situation. Especially the Fukushima example shows that the robotic systems not only have to face a variety of different tasks during operation but also have to deal with different demands regarding the robot's mobility characteristics. To be able to cope with future requirements, it seems necessary to develop kinematically complex systems that feature several different operating modes. That is where this thesis comes in: A robotic system is developed, whose morphology is oriented on chimpanzees and which has the possibility due to its electro-mechanical structure and the degrees of freedom in its arms and legs to walk with different gaits in different postures. For the proposed robot, the chimpanzee was chosen as a model, since these animals show a multitude of different gaits in nature. A quadrupedal gait like crawl allows the robot to traverse safely and stable over rough terrain. A change into the humanoid, bipedal posture enables the robot to move in man-made environments. The structures, which are necessary to ensure an effective and stable locomotion in these two poses, e.g., the feet, are presented in more detail within the thesis. This includes the biological model and an abstraction to allow a technical implementation. In addition, biological spines are analyzed and the development of an active, artificial spine for the robotic system is described. These additional degrees of freedom can increase the robot's locomotion and manipulation capabilities and even allow to show movements, which are not possible without a spine. Unfortunately, the benefits of using an artificial spine in robotic systems are nowadays still neglected, due to the increased complexity of system design and control. To be able to control such a kinematically complex system, a multitude of sensors is installed within the robot's structures. By placing evaluation electronics close by, a local and decentralized preprocessing is realized. Due to this preprocessing is it possible to realize behaviors on the lowest level of robot control: in this thesis it is exemplarily demonstrated by a local controller in the robot's lower leg. In addition to the development and evaluation of robot's structures, the functionality of the overall system is analyzed in different environments. This includes the presentation of detailed data to show the advantages and disadvantages of the local controller. The robot can change its posture independently from a quadrupedal into a bipedal stance and the other way around without external assistance. Once the robot stands upright, it is to investigate to what extent the quadrupedal walking pattern and control structures (like the local controller) have to be modified to contribute to the bipedal walking as well
    corecore