3,486 research outputs found

    Novel Approach to Design Ultra Wideband Microwave Amplifiers: Normalized Gain Function Method

    Get PDF
    In this work, we propose a novel approach called as “Normalized Gain Function (NGF) method” to design low/medium power single stage ultra wide band microwave amplifiers based on linear S parameters of the active device. Normalized Gain Function TNGF is defined as the ratio of T and |S21|^2, desired shape or frequency response of the gain function of the amplifier to be designed and the shape of the transistor forward gain function, respectively. Synthesis of input/output matching networks (IMN/OMN) of the amplifier requires mathematically generated target gain functions to be tracked in two different nonlinear optimization processes. In this manner, NGF not only facilitates a mathematical base to share the amplifier gain function into such two distinct target gain functions, but also allows their precise computation in terms of TNGF=T/|S21|^2 at the very beginning of the design. The particular amplifier presented as the design example operates over 800-5200 MHz to target GSM, UMTS, Wi-Fi and WiMAX applications. An SRFT (Simplified Real Frequency Technique) based design example supported by simulations in MWO (MicroWave Office from AWR Corporation) is given using a 1400mW pHEMT transistor, TGF2021-01 from TriQuint Semiconductor

    Design of L-S band broadband power amplifier using microstip lines

    Get PDF
    This contribution introduces a novel broadband power amplifier design, operating in the frequency band ranging from 1.5 GHz to 3 GHz which cover the mainstream applications running in L and S bands. Both matching and biasing networks are synthesized by using microstrip transmission lines. In order to provide a wide bandwidth, two broadband matching techniques are deployed for this purpose, the first technique is an approximate transformation of a previously designed lumped elements matching networks into microstrip matching circuits, and the second technique is a binomial multi-sections quarter wave impedance transformer. The proposed work is based on ATF-13786 active device. The simulation results depict a maximum power gain of 16.40 dB with an excellent input and output matching across 1.5 GHz ~ 3 GHz. At 2.2 GHz, the introduced BPA achieves a saturated output power of 16.26 dBm with a PAE of 21.74%, and a 1-dB compression point of 4.5 dBm input power level. The whole circuitry is unconditionally stable over the overall bandwidth. By considering the broadband matching, the proposed design compares positively with the most recently published BPA

    A trade-off design of microstrip broadband power amplifier for UHF applications

    Get PDF
    In this paper, the design of a Broadband Power Amplifier for UHF applications is presented. The proposed BPA is based on ATF13876 Agilent active device. The biasing and matching networks both are implemented by using microstrip transmission lines. The input and output matching circuits are designed by combining two broadband matching techniques: a binomial multi-section quarter wave impedance transformer and an approximate transformation of previously designed lumped elements. The proposed BPA shows excellent performances in terms of impedance matching, power gain and unconditionally stability over the operating bandwidth ranging from 1.2 GHz to 3.3 GHz. At 2.2 GHz, the large signal simulation shows a saturated output power of 18.875 dBm with an output 1-dB compression point of 6.5 dBm of input level and a maximum PAE of 36.26%

    1.25 GHz – 3.3 GHz broadband solid state power amplifier for L and S bands applications

    Get PDF
    The research of a single stage broadband solid-state power amplifier based on ATF13876 transistor, which operates in the frequency ranging from 1.25 GHz ~3.3 GHz is presented in this paper. To achieve the broadband performance of the operating bandwidth, a multi-section quarter wave impedance transformer and an approximate transformation of previously synthesized lumped elements into transmission lines are adopted. With neatly design of broadband matching networks and biasing circuit, excellent matching performances and unconditionally stability are achieved over the whole operating bandwidth with a maximum gain of 17.2 dB. The large signal simulation shows that the proposed circuit reaches a saturated output power of 18.12 dBm with a maximum PAE of 27.55% and a 1-dB compression point at 5 dBm input power level. Considering the wide frequency coverage, the features of the proposed design compares favorably with the contemporary state-of-the-art

    A Multiband Biconical Log-periodic Antenna for Swarm Communications

    Get PDF
    In this paper, we present a specific multiband antenna design that addresses the problem of communication with unmanned aerial vehicles (UAVs). We consider a scenario where multiband single-antenna UAV communicates with the rest of the swarm members that are equipped with similar antennas. The key point in the design is that the communication does not require high or low elevation angles in most of the cases. The suggested design has a sufficient degree of freedom to select the desired features for the field pattern while keeping other features such as antenna impedance and gain relatively stable or at least in the acceptable operation region

    FSRFT Based broadband double matching via passband extremums determination

    Get PDF
    Fast simplified real frequency technique (FSRFT) is a numerical solver used to solve microwave broadband doublematching (DM) circuit design problems in a much faster and effective manner. Recently, it has been reported that an FSRFT based Matlab code can complete the design of a order lowpass lumped element double matching network to match a given generator and load impedance within an optimization time of only 0.6 seconds, a 47 fold less time than that of the same design done using the classical simplified real frequency technique (SRFT). FSRFT owes this superior speed performance to the fact that it tracks only (system unknowns plus 1) number of passband extremum points selected from among the number of gain data ( ). This work introduces a simple numerical technique called PED (passband extremums determination technique) to be used in determination of these passband extremum points (PEs). An exemplary order microwave bandpass DM circuit design using FSRFT based Matlab (of Mathworks Inc.) code and the simulation of this design via MWO (of AWR Corp.) has yielded the same circuit performance with an exact agreement. Thus, FSRFT, equipped with the PED, newly proposed hereby, might be used as a powerful solver in designing broadband circuits in many fields such as RF/microwave, radar, and communications.Publisher's Versio
    corecore