56 research outputs found

    Constructing multiwing attractors from a robust chaotic system with non-hyperbolic equilibrium points

    Get PDF
    We investigate a three-dimensional (3D) robust chaotic system which only holds two nonhyperbolic equilibrium points, and finds the complex dynamical behaviour of position modulation beyond amplitude modulation. To extend the application of this chaotic system, we initiate a novel methodology to construct multiwing chaotic attractors by modifying the position and amplitude parameters. Moreover, the signal amplitude, range and distance of the generated multiwings can be easily adjusted by using the control parameters, which enable us to enhance the potential application in chaotic cryptography and secure communication. The effectiveness of the theoretical analyses is confirmed by numerical simulations. Particularly, the multiwing attractor is physically realized by using DSP (digital signal processor) chip

    Chaotic attractors based on unstable dissipative systems via third-order differential equation

    Get PDF
    "In this paper, we present an approach how to yield 1D, 2D and 3D-grid multi-scroll chaotic systems in R3 based on unstable dissipative systems via third-order differential equation. This class of systems is constructed by a switching control law(SCL) changing the equilibrium point of an unstable dissipative system. The switching control law that governs the position of the equilibrium point varies according to the number of scrolls displayed in the attractor.

    Design and implementation of grid multi-scroll fractional-order chaotic attractors

    Get PDF
    This paper proposes a novel approach for generating multi-scroll chaotic attractors in multidirections for fractional-order (FO) systems. The stair nonlinear function series and the saturated nonlinear function are combined to extend equilibrium points with index 2 in a new FO linear system. With the help of stability theory of FO systems, stability of its equilibrium points is analyzed, and the chaotic behaviors are validated through phase portraits, Lyapunov exponents, and Poincaré section. Choosing the order 0.96 as an example, a circuit for generating 2-D grid multiscroll chaotic attractors is designed, and 2-D 9x9 grid FO attractors are observed at most. Numerical simulations and circuit experimental results show that the method is feasible and the designed circuit is correct.info:eu-repo/semantics/publishedVersio

    Fractional order chaotic systems and their electronic design

    Get PDF
    "Con el desarrollo del cálculo fraccionario y la teoría del caos, los sistemas caóticos de orden fraccionario se han convertido en una forma útil de evaluar las características de los sistemas dinámicos. En esta dirección, esta tesis es principalmente relacionada, es decir, en el estudio de sistemas caóticos de orden fraccionario, basado en sistemas disipativos de inestables, un sistema disipativo de inestable de orden fraccionario es propuesto. Algunas propiedades dinámicas como puntos de equilibrio, exponentes de Lyapunov, diagramas de bifurcación y comportamientos dinámicos caóticos del sistema caótico de orden fraccionario son estudiados. Los resultados obtenidos muestran claramente que el sistema discutido presenta un comportamiento caótico. Por medio de considerar la teoría del cálculo fraccionario y simulaciones numéricas, se muestra que el comportamiento caótico existe en el sistema de tres ecuaciones diferenciales de orden fraccionario acopladas, con un orden menor a tres. Estos resultados son validados por la existencia de un exponente positivo de Lyapunov, además de algunos diagramas de fase. Por otra parte, la presencia de caos es también verificada obteniendo la herradura topológica. Dicha prueba topológica garantiza la generaci´n de caos en el sistema de orden fraccionario propuesto. En orden de verificar la efectividad del sistema propuesto, un circuito electrónico es diseñado con el fin de sintetizar el sistema caótico de orden fraccionario.""With the development of fractional order calculus and chaos theory, the fractional order chaotic systems have become a useful way to evaluate characteristics of dynamical systems and forecast the trend of complex systems. In this direction, this thesis is primarily concerned with the study of fractional order chaotic systems, based on an unstable dissipative system (UDS), a fractional order unstable dissipative system (FOUDS) is proposed. Dynamical properties, such as equilibrium points, Lyapunov exponents, bifurcation diagrams and phase diagrams of the fractional order chaotic system are studied. The obtained results shown that the fractional order unstable dissipative system has a chaotic behavior. By utilizing the fractional calculus theory and computer simulations, it is found that chaos exists in the fractional order three dimensional system with order less than three. The lowest order to yield chaos in this system is 2.4. The results are validated by the existence of one positive Lyapunov exponent, phase diagrams; Besides, the presence of chaos is also verified obtaining the topological horseshoe. That topological proof guarantees the chaos generation in the proposed fractional order unstable dissipative system. In order to verify the effectiveness of the proposed system, an electronic circuit is designed with the purpose of synthesize the fractional order chaotic system, the fractional order integral is realized with electronic circuit utilizing the synthesis of a fractance circuit. The realization has been done via synthesis as passive RC circuits connected to an operational amplifier. The continuos fractional expansion have been utilized on fractional integration transfer function which has been approximated to integer order rational transfer function considering the Charef Method. The analogue electronics circuits have been simulated using HSPICE.

    A fully CMOS true random number generator based on hidden attractor hyperchaotic system

    Get PDF
    Low-power devices used in Internet-of-things networks have been short of security due to the high power consumption of random number generators. This paper presents a low-power hyperchaos-based true random number generator, which is highly recommended for secure communications. The proposed system, which is based on a four-dimensional chaotic system with hidden attractors and oscillators, exhibits rich dynamics. Numerical analysis is provided to verify the dynamic characteristics of the proposed system. A fully customized circuit is deployed using 130 nm CMOS technology to enable integration into low-power devices. Four output signals are used to seed a SHIFT-XOR-based chaotic data post-processing to generate random bit output. The chip prototype was simulated and tested at 100 MHz sampling frequency. The hyperchaotic circuit consumes a maximum of 980 μ W in generating chaotic signals while dissipates a static current of 623 μ A. Moreover, the proposed system provides ready-to-use binary random bit sequences which have passed the well-known statistical randomness test suite NIST SP800-22. The proposed novel system design and its circuit implementation provide a best energy efficiency of 4.37 pJ/b at a maximum sampling frequency of 100 MHz

    A fully CMOS true random number generator based on hidden attractor hyperchaotic system

    Get PDF
    AbstractLow-power devices used in Internet-of-things networks have been short of security due to the high power consumption of random number generators. This paper presents a low-power hyperchaos-based true random number generator, which is highly recommended for secure communications. The proposed system, which is based on a four-dimensional chaotic system with hidden attractors and oscillators, exhibits rich dynamics. Numerical analysis is provided to verify the dynamic characteristics of the proposed system. A fully customized circuit is deployed using 130 nm CMOS technology to enable integration into low-power devices. Four output signals are used to seed a SHIFT-XOR-based chaotic data post-processing to generate random bit output. The chip prototype was simulated and tested at 100 MHz sampling frequency. The hyperchaotic circuit consumes a maximum of 980 \upmu μ W in generating chaotic signals while dissipates a static current of 623 \upmu μ A. Moreover, the proposed system provides ready-to-use binary random bit sequences which have passed the well-known statistical randomness test suite NIST SP800-22. The proposed novel system design and its circuit implementation provide a best energy efficiency of 4.37 pJ/b at a maximum sampling frequency of 100 MHz

    Symmetry in Chaotic Systems and Circuits

    Get PDF
    Symmetry can play an important role in the field of nonlinear systems and especially in the design of nonlinear circuits that produce chaos. Therefore, this Special Issue, titled “Symmetry in Chaotic Systems and Circuits”, presents the latest scientific advances in nonlinear chaotic systems and circuits that introduce various kinds of symmetries. Applications of chaotic systems and circuits with symmetries, or with a deliberate lack of symmetry, are also presented in this Special Issue. The volume contains 14 published papers from authors around the world. This reflects the high impact of this Special Issue
    corecore