665 research outputs found

    Insights into tunnel FET-based charge pumps and rectifiers for energy harvesting applications

    Get PDF
    In this paper, the electrical characteristics of tunnel field-effect transistor (TFET) devices are explored for energy harvesting front-end circuits with ultralow power consumption. Compared with conventional thermionic technologies, the improved electrical characteristics of TFET devices are expected to increase the power conversion efficiency of front-end charge pumps and rectifiers powered at sub-µW power levels. However, under reverse bias conditions the TFET device presents particular electrical characteristics due to its different carrier injection mechanism. In this paper, it is shown that reverse losses in TFET-based circuits can be attenuated by changing the gate-to-source voltage of reverse-biased TFETs. Therefore, in order to take full advantage of the TFETs in front-end energy harvesting circuits, different circuit approaches are required. In this paper, we propose and discuss different topologies for TFET-based charge pumps and rectifiers for energy harvesting applications.Peer ReviewedPostprint (author's final draft

    Tunnel Field-Effect Transistor: Impact of the Asymmetric and Symmetric Ambipolarity on Fault and Performance in Digital Circuits

    Get PDF
    Tunnel Field-Effect Transistors (TFETs) have been considered one of the most promising technologies to complement or replace CMOS for ultra-low-power applications, thanks to their subthreshold slope below the well-known limit of 60 mV/dec at room temperature holding for the MOSFET technologies. Nevertheless, TFET technology still suffers of ambipolar conduction, limiting its applicability in digital systems. In this work, we analyze through SPICE simulations, the impact of the symmetric and asymmetric ambipolarity in failure and power consumption for TFET-based complementary logic circuits. Our results clarify the circuit-level effects induced by the ambipolarity feature, demonstrating that it affects the correct functioning of logic gates and strongly impacts power consumption. We believe that our outcomes motivate further research towards technological solutions for ambipolarity suppression in TFET technology for near-future ultra-low-power application

    Digital and analog TFET circuits: Design and benchmark

    Get PDF
    In this work, we investigate by means of simulations the performance of basic digital, analog, and mixed-signal circuits employing tunnel-FETs (TFETs). The analysis reviews and complements our previous papers on these topics. By considering the same devices for all the analysis, we are able to draw consistent conclusions for a wide variety of circuits. A virtual complementary TFET technology consisting of III-V heterojunction nanowires is considered. Technology Computer Aided Design (TCAD) models are calibrated against the results of advanced full-quantum simulation tools and then used to generate look-up-tables suited for circuit simulations. The virtual complementary TFET technology is benchmarked against predictive technology models (PTM) of complementary silicon FinFETs for the 10 nm node over a wide range of supply voltages (VDD) in the sub-threshold voltage domain considering the same footprint between the vertical TFETs and the lateral FinFETs and the same static power. In spite of the asymmetry between p- and n-type transistors, the results show clear advantages of TFET technology over FinFET for VDDlower than 0.4 V. Moreover, we highlight how differences in the I-V characteristics of FinFETs and TFETs suggest to adapt the circuit topologies used to implement basic digital and analog blocks with respect to the most common CMOS solutions

    Digital and analog TFET circuits: Design and benchmark

    Get PDF
    In this work, we investigate by means of simulations the performance of basic digital, analog, and mixed-signal circuits employing tunnel-FETs (TFETs). The analysis reviews and complements our previous papers on these topics. By considering the same devices for all the analysis, we are able to draw consistent conclusions for a wide variety of circuits. A virtual complementary TFET technology consisting of III-V heterojunction nanowires is considered. Technology Computer Aided Design (TCAD) models are calibrated against the results of advanced full-quantum simulation tools and then used to generate look-up-tables suited for circuit simulations. The virtual complementary TFET technology is benchmarked against predictive technology models (PTM) of complementary silicon FinFETs for the 10 nm node over a wide range of supply voltages (VDD) in the sub-threshold voltage domain considering the same footprint between the vertical TFETs and the lateral FinFETs and the same static power. In spite of the asymmetry between p- and n-type transistors, the results show clear advantages of TFET technology over FinFET for VDDlower than 0.4 V. Moreover, we highlight how differences in the I-V characteristics of FinFETs and TFETs suggest to adapt the circuit topologies used to implement basic digital and analog blocks with respect to the most common CMOS solutions

    Steep-slope Devices for Power Efficient Adiabatic Logic Circuits

    Get PDF
    Reducing supply voltage is an effective way to reduce power consumption, however, it greatly reduces CMOS circuits speed. This translates in limitations on how low the supply voltage can be reduced in many applications due to frequency constraints. In particular, in the context of low voltage adiabatic circuits, another well-known technique to save power, it is not possible to obtain satisfactory power-speed trade-offs. Tunnel field-effect transistors (TFETs) have been shown to outperforms CMOS at low supply voltage in static logic implementations, operation due to their steep subthreshold slope (SS), and have potential for combining low voltage and adiabatic. To the best of our knowledge, the adiabatic circuit topologies reported with TFETs do not take into account the problems associated with their inverse current due to their intrinsic p-i-n diode. In this paper, we propose a solution to this problem, demonstrating that the proposed modification allows to significantly improving the performance in terms of power/energy savings compared to the original ones, especially at medium and low frequencies. In addition, we have evaluated the relative advantages of the proposed TFET adiabatic circuits, both at gate and architecture levels, with respect to their static implementations, demonstrating that these are greater than for FinFET transistor designs. Index Terms—Adiabatic logic, TunnelPeer reviewe

    Complementary tunnel gate topology to reduce crosstalk effects

    Get PDF
    Tunnel transistors are one of the most attractive steep subthreshold slope devices which are being investigated to overcome power density and energy inefficiency exhibited by CMOS technology. There are design challenges associated to their distinguishing characteristic which are being addressed. In this paper the impact of the non-symmetric conduction of tunnel transistors (TFETs) on the speed of TFETs circuits under crosstalk is analyzed and a novel topology for complementary tunnel transistors gates, which mitigates the observed performance degradation without power penalties, is described and evaluated

    TFET-Based power management circuit for RF energy harvesting

    Get PDF
    This paper proposes a Tunnel FET (TFET)-based power management circuit (PMC) for ultra-low power RF energy harvesting applications. In contrast with conventional thermionic devices, the band-to-band tunneling mechanism of TFETs allows a better switching performance at sub-0.2 V operation. As a result, improved efficiencies in RF-powered circuits are achieved, thanks to increased rectification performance at low power levels and to the reduced energy required for a proper PMC operation. It is shown by simulations that heterojunction TFET devices designed with III-V materials can improve the rectification process at received power levels below -20 dBm (915 MHz) when compared to the application of homojunction III-V TFETs and Si FinFETs. For an available power of -25 dBm, the proposed converter is able to deliver 1.1 µW of average power (with 0.5 V) to the output load with a boost efficiency of 86%.Postprint (author's final draft

    Comparison of TFETs and CMOS using optimal design points for power-speed trade-offs

    Get PDF
    Tunnel transistors are one of the most attractive steep subthreshold slope devices currently being investigated as a means of overcoming the power density and energy inefficiency limitations of CMOS technology. In this paper, the evaluation and the comparison of the performance of distinct fan-in logic gates, using a set of widely accepted power-speed metrics, are addressed for five projected tunnel transistor (TFET) technologies and four mosfet and FinFET transistors. The impact of logic depth, switching activity, and minimum supply voltage has been also included in our analysis. Provided results suggest that benefits in terms of a certain metric, in which a higher weight is placed on power or delay, are strongly determined by the selected device. Particularly, the suitability of two of the explored TFET technologies to improve CMOS performance for different metrics is pointed out. A circuit level benchmark is evaluated to validate our analysis.Ministerio de Economía y Competitividad TEC2013-40670-

    Assessment of InAs/AlGaSb Tunnel-FET Virtual Technology Platform for Low-Power Digital Circuits

    Get PDF
    In this work, a complementary InAs/Al0.05Ga0.95Sb tunnel field-effect-Transistor (TFET) virtual technology platform is benchmarked against the projection to the CMOS FinFET 10-nm node, by means of device and basic circuit simulations. The comparison is performed in the ultralow voltage regime (below 500 mV), where the proposed III-V TFETs feature ON-current levels comparable to scaled FinFETs, for the same low-operating-power OFF-current. Due to the asymmetrical n-and p-Type I-V exts , trends of noise margins and performances are investigated for different Wp/Wn ratios. Implications of the device threshold voltage variability, which turned out to be dramatic for steep slope TFETs, are also addressed

    Assessment of InAs/AlGaSb Tunnel-FET Virtual Technology Platform for Low-Power Digital Circuits

    Get PDF
    In this work, a complementary InAs/Al0.05Ga0.95Sb tunnel field-effect-transistor (TFET) virtual technology platform is benchmarked against the projection to the CMOS FinFET 10-nm node, by means of device and basic circuit simulations. The comparison is performed in the ultralow voltage regime (below 500 mV), where the proposed III\u2013V TFETs feature ON-current levels comparable to scaled FinFETs, for the same low-operating-power OFF-current. Due to the asymmetrical n- and p-type I\u2013Vs, trends of noise margins and performances are investigated for different Wp/Wn ratios. Implications of the device threshold voltage variability, which turned out to be dramatic for steep slope TFETs, are also addressed
    • …
    corecore