617 research outputs found

    Automated design of low complexity FIR filters

    Get PDF

    FIR filter optimization for video processing on FPGAs

    Get PDF

    Gate level optimisation of primitive operator digital filters using a carry save decomposition

    Get PDF

    Evolutionary design of digital VLSI hardware

    Get PDF

    To Develop and Implement Low Power, High Speed VLSI for Processing Signals using Multirate Techniques

    Get PDF
    Multirate technique is necessary for systems with different input and output sampling rates. Recent advances in mobile computing and communication applications demand low power and high speed VLSI DSP systems [4]. This Paper presents Multirate modules used for filtering to provide signal processing in wireless communication system. Many architecture developed for the design of low complexity, bit parallel Multiple Constant Multiplications operation which dominates the complexity of DSP systems. However, major drawbacks of present approaches are either too costly or not efficient enough. On the other hand, MCM and digit-serial adder offer alternative low complexity designs, since digit-serial architecture occupy less area and are independent of the data word length [1][10]. Multiple Constant Multiplications is efficient way to reduce the number of addition and subtraction in polyphase filter implementation. This Multirate design methodology is systematic and applicable to many problems. In this paper, attention has given to the MCM & digit serial architecture with shifting and adding techniques that offers alternative low complexity in operations. This paper also focused on Multirate Signal Processing Modules using Voltage and Technology scaling. Reduction of power consumption is important for VLSI system and also it becomes one of the most critical design parameter. Transistorized Multirate module which has full custom design with different circuit topology and optimization level simulated on cadence platform. Multirate modules are used AMI 0.6 um, TSMC 0.35 um, and TSMC 0.25 um technologies for different voltage scaling. The presented methodology provides a systematic way to derive circuit technique for high speed operation at a low supply voltage. Multirate polyphase interpolator and decimator are also designed and optimized at architectural level in order to analyze the terms power consumption, area and speed. DOI: 10.17762/ijritcc2321-8169.150314

    Energy-Aware Scheduling of FIR Filter Structures using a Timed Automata Model

    Get PDF

    Studies on Implementation of . . . High Throughput and Low Power Consumption

    Get PDF
    In this thesis we discuss design and implementation of frequency selective digital filters with high throughput and low power consumption. The thesis includes proposed arithmetic transformations of lattice wave digital filters that aim at increasing the throughput and reduce the power consumption of the filter implementation. The thesis also includes two case studies where digital filters with high throughput and low power consumption are required. A method for obtaining high throughput as well as reduced power consumption of digital filters is arithmetic transformation of the filter structure. In this thesis arithmetic transformations of first- and second-order Richards’ allpass sections composed by symmetric two-port adaptors and implemented using carry-save arithmetic are proposed. Such filter sections can be used for implementation of lattice wave digital filters and bireciprocal lattice wave digital filters. The latter structures are efficient for implementation of interpolators and decimators by factors of two. Th
    • …
    corecore