198 research outputs found

    Conflicting Parameter Pair Optimization for Linear Aperiodic Antenna Array using Chebyshev Taper based Genetic Algorithm

    Get PDF
    In this study, the peak side lobe level (PSLL) in the radiation pattern of a linear antenna array (LAA) is lowered without affecting its first null beam width (FNBW). Antenna array synthesis is commonly applied to achieve high directivity, low side lobes, high gain and desired null positions in the output radiation pattern. But output parameters like PSLL, null positions and beam width conflict with each other, i.e. as one parameter improves, the other deteriorates. To avoid this problem, a multi-objective optimization algorithm can be implemented, in which both the conflicting parameters can be simultaneously optimized. This work proposes a multi-objective algorithm, which takes advantages of the well-known Chebyshev tapering and genetic algorithm (GA), to lower the PSLL without broadening the beam further. Array elements are fed using Chebyshev tapered excitations while GA is incorporated to optimize the elemental spacing. The results of 28-element LAA are compared with those of multi-objective Cauchy mutated cat swarm optimization (MO-CMCSO) existing in literature, which has also been proven to be superior to multi-objective cat swarm optimization (MO-CSO) and multi-objective particle swarm optimization (MO-PSO). Results indicate that the proposed algorithm performs better by further reducing the PSLL from -21.57 dB (MO-CMCSO) to -28.18 dB, while maintaining the same FNBW of 7.4 degrees

    Mutual Coupling in Phased Arrays: A Review

    Get PDF
    The mutual coupling between antenna elements affects the antenna parameters like terminal impedances, reflection coefficients and hence the antenna array performance in terms of radiation characteristics, output signal-to-interference noise ratio (SINR), and radar cross section (RCS). This coupling effect is also known to directly or indirectly influence the steady state and transient response, the resolution capability, interference rejection, and direction-of-arrival (DOA) estimation competence of the array. Researchers have proposed several techniques and designs for optimal performance of phased array in a given signal environment, counteracting the coupling effect. This paper presents a comprehensive review of the methods that model and mitigate the mutual coupling effect for different types of arrays. The parameters that get affected due to the presence of coupling thereby degrading the array performance are discussed. The techniques for optimization of the antenna characteristics in the presence of coupling are also included

    Digital Predistortion of Pseudo-Orthogonal Wideband Waveforms for Dual-Polarimetric Phased Array Radars

    Get PDF
    Many new and interesting radar operational modes and techniques are being explored to maximize the efficiency and utility of next-generation radar systems while complying with increasingly stringent operational and budgeting requirements. This dissertation's aim is to analyze and present possible techniques to help maximize the scientific value of measurements while complying with operational requirements through methods of physical transmission and exciting the target area, methods of processing the received waveforms, and methods of designing waveforms for a given system. In regard to methods of physical transmission and exciting the target area, this dissertation addresses unique problems that will be faced by next-generation radar systems utilizing simultaneous transmit and simultaneous receive operational modes in polarimetric active phased array architectures. This is accomplished through establishing mathematical representations of the received complex baseband waveforms for dual-polarimetric radar operation and analyzing the predicted behavior versus traditional polarimetric radar alternating transmit and simultaneous receive operation. In regard to methods of processing the received waveforms, pulse compression will undoubtedly be widely utilized in future radar systems due to the increase in range resolution that it provides for a given pulse length. Additionally, matched filtering allows the realization of simultaneously transmitted pseudo-orthogonal waveforms occupying the same spectral region that would be otherwise impossible. As a result, the mathematical basis of pulse compression is provided, and pulse compression effects are taken into account in all relevant system analyses in this manuscript. This dissertation arguably provides the most attention in regard to methods for designing and modifying waveforms for application in a given system. An analysis of common pulse compression waveforms for suitability in pseudo-orthogonal waveform sets is provided in addition to a novel method for designing polyphase coded waveform and non-linear frequency modulated waveform based pseudo-orthogonal waveform sets utilizing particle swarm optimization. Additionally, for the first time, research is presented on the full design and application methods for digital predistortion of wideband solid state radar amplifiers. Digital predistortion methods and results are presented for both the impedance matched high power amplifier case and for the varying load impedance case that can be expected to be encountered in radar systems utilizing electronic beamsteering in active phased array architectures. Overall, this dissertation's aim is to provide relevant results from conducted research in the form of analysis and novel design methods that can be applied in both the design and operation of next-generation radar systems to maximize utility and scientific data quality while operating within given system and environmental specifications

    Performance comparison of quantized control synthesis methods of antenna arrays

    Get PDF
    There is a great potential in small satellite technology for testing new sensors, processes, and technologies for space applications. Antennas need careful design when developing a small satellite to establish stable communication between the ground station and the satellite. This work is motivated by the design of an antenna array for a future rotatorless base station for the VZLUSAT group of Czech nano-satellites. The realized antenna array must cover a relatively broad range of elevation and azimuth angles, and the control must be fast enough to track the satellite in low Earth orbits. The paper deals with possibilities of synthesis of quantized control of the antenna array. It compares quantization influence for well-known deterministic synthesis methods. It shows the method for decreasing computational cost of synthesis using optimization approach and presents the multi-criteria optimization as a tool for reaching required radiation pattern shape and low sensitivity to quantization at the same time

    Array Pattern Synthesis Using a Digital Position Shift Method

    Get PDF
    Considering all possible steering directions for beam scanning, a digital position shift method (DPSM) is presented to minimize the Peak Sidelobe Level (PSL) by searching the best position solution for every sensor and calculating the pattern with position offset factor. For the truly minimum PSL, digital position shift with optimal amplitude (DPSOA) is considered simultaneously for beam scanning. For searching the best solution to the two methods, constrained conditions for position shift range and amplitude range are described. The method of feedback particle swarm optimization (FPSO) is presented to obtain a large searching space and fast convergence in local space with refined solution. Numerical examples show that the optimized results by DPSM and DPSOA in all steering directions can be used in beam scanning for its digital realization. When compared with the other techniques published in the literature, especially the steering direction close to endfire direction, this method has lower PSL when the main beam width is maintained

    Bio-inspired optimization algorithms for smart antennas

    Get PDF
    This thesis studies the effectiveness of bio-inspired optimization algorithms in controlling adaptive antenna arrays. Smart antennas are able to automatically extract the desired signal from interferer signals and external noise. The angular pattern depends on the number of antenna elements, their geometrical arrangement, and their relative amplitude and phases. In the present work different antenna geometries are tested and compared when their array weights are optimized by different techniques. First, the Genetic Algorithm and Particle Swarm Optimization algorithms are used to find the best set of phases between antenna elements to obtain a desired antenna pattern. This pattern must meet several restraints, for example: Maximizing the power of the main lobe at a desired direction while keeping nulls towards interferers. A series of experiments show that the PSO achieves better and more consistent radiation patterns than the GA in terms of the total area of the antenna pattern. A second set of experiments use the Signal-to-Interference-plus-Noise-Ratio as the fitness function of optimization algorithms to find the array weights that configure a rectangular array. The results suggest an advantage in performance by reducing the number of iterations taken by the PSO, thus lowering the computational cost. During the development of this thesis, it was found that the initial states and particular parameters of the optimization algorithms affected their overall outcome. The third part of this work deals with the meta-optimization of these parameters to achieve the best results independently from particular initial parameters. Four algorithms were studied: Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing and Hill Climb. It was found that the meta-optimization algorithms Local Unimodal Sampling and Pattern Search performed better to set the initial parameters and obtain the best performance of the bio-inspired methods studied

    Advanced Radio Frequency Antennas for Modern Communication and Medical Systems

    Get PDF
    The main objective of this book is to present novel radio frequency (RF) antennas for 5G, IOT, and medical applications. The book is divided into four sections that present the main topics of radio frequency antennas. The rapid growth in development of cellular wireless communication systems over the last twenty years has resulted in most of world population owning smartphones, smart watches, I-pads, and other RF communication devices. Efficient compact wideband antennas are crucial in RF communication devices. This book presents information on planar antennas, cavity antennas, Vivaldi antennas, phased arrays, MIMO antennas, beamforming phased array reconfigurable Pabry-Perot cavity antennas, and time modulated linear array

    Adaptive beamforming and switching in smart antenna systems

    Get PDF
    The ever increasing requirement for providing large bandwidth and seamless data access to commuters has prompted new challenges to wireless solution providers. The communication channel characteristics between mobile clients and base station change rapidly with the increasing traveling speed of vehicles. Smart antenna systems with adaptive beamforming and switching technology is the key component to tackle the challenges. As a spatial filter, beamformer has long been widely used in wireless communication, radar, acoustics, medical imaging systems to enhance the received signal from a particular looking direction while suppressing noise and interference from other directions. The adaptive beamforming algorithm provides the capability to track the varying nature of the communication channel characteristics. However, the conventional adaptive beamformer assumes that the Direction of Arrival (DOA) of the signal of interest changes slowly, although the interference direction could be changed dynamically. The proliferation of High Speed Rail (HSR) and seamless wireless communication between infrastructure ( roadside, trackside equipment) and the vehicles (train, car, boat etc.) brings a unique challenge for adaptive beamforming due to its rapid change of DOA. For a HSR train with 250km/h, the DOA change speed can be up to 4⁰ per millisecond. To address these unique challenges, faster algorithms to calculate the beamforming weight based on the rapid-changing DOA are needed. In this dissertation, two strategies are adopted to address the challenges. The first one is to improve the weight calculation speed. The second strategy is to improve the speed of DOA estimation for the impinging signal by leveraging on the predefined constrained route for the transportation market. Based on these concepts, various algorithms in beampattern generation and adaptive weight control are evaluated and investigated in this thesis. The well known Generalized Sidelobe Cancellation (GSC) architecture is adopted in this dissertation. But it faces serious signal cancellation problem when the estimated DOA deviates from the actual DOA which is severe in high mobility scenarios as in the transportation market. Algorithms to improve various parts of the GSC are proposed in this dissertation. Firstly, a Cyclic Variable Step Size (CVSS) algorithm for adjusting the Least Mean Square (LMS) step size with simplicity for implementation is proposed and evaluated. Secondly, a Kalman filter based solution to fuse different sensor information for a faster estimation and tracking of the DOA is investigated and proposed. Thirdly, to address the DOA mismatch issue caused by the rapid DOA change, a fast blocking matrix generation algorithm named Simplifized Zero Placement Algorithm (SZPA) is proposed to mitigate the signal cancellation in GSC. Fourthly, to make the beam pattern robust against DOA mismatch, a fast algorithm for the generation of at beam pattern named Zero Placement Flat Top (ZPFT) for the fixed beamforming path in GSC is proposed. Finally, to evaluate the effectiveness and performance of the beamforming algorithms, wireless channel simulation is needed. One of the challenging aspects for wireless simulation is the coupling between Probability Density Function (PDF) and Power Spectral Density (PSD) for a random variable. In this regard, a simplified solution to simulate Non Gaussian wireless channel is proposed, proved and evaluated for the effectiveness of the algorithm. With the above optimizations, the controlled simulation shows that the at top beampattern can be generated 380 times faster than iterative optimization method and blocking matrix can be generated 9 times faster than normal SVD method while the same overall optimum state performance can be achieved
    corecore