2,568 research outputs found

    Strategically Addressing the Latest Challenges of Workplace Mobility to Meet the Increasing Mobile Usage Demands

    Get PDF
    During this post-PC era, many organizations are embracing the concept of IT consumerization/ Bring-Your-Own Device (BYOD) in their workplace. BYOD is a strategy that enables employees to utilize their personally-owned mobile devices, such as smart phones, tablets, laptops, and netbooks, to connect to the corporate network and access enterprise data. It is estimated that employees will bring two to four Internet-capable devices to work for personal and professional activities. From increased employee satisfaction and productivity to lower IT equipment and operational expenditures, companies have recognized that mobile devices are reasonably essential to their own success. However, many organizations are facing significant challenges with the explosion of mobile devices being used today along with provisioning the appropriate supporting infrastructure due to the unprecedented demands on the wireless and network infrastructures. For example, there is not only a growth in the number of wirelessly connected devices but the amount of bandwidth being consumed on the enterprise networks as well which is furthermore driven by increased usage of video and enterprise applications. Managing mobility and storage along with securing corporate assets have become difficult tasks for IT professionals as many organizations underestimate the potential security and privacy risks of using wireless devices to access organizational resources and data. Therefore, to address the needs and requirements of a new mobile workforce, organizations must involve key members from the Information Technology (IT), Human Resources (HR) and various business units to evaluate the existing and emerging issues and risks posed by BYOD. Then a mobile strategy should be developed by taking into consideration the enterprise objectives to ensure it aligns with the overall organizational strategy. There are various solutions available to address the needs and demands of an organization, such as Distributed Intelligence Architecture, network optimization, monitoring tools, unified management and security platforms, and other security measures. By implementing a suitable mobile strategy, organizations can ensure their particular enterprise network and wireless architecture is designed for highly scalability, performance and reliability. They must also evaluate their existing policies and procedures to ensure appropriate security and privacy measures are in place to address the increasing mobile usage demands and potential liability risks. By taking these factors into consideration, our team has analyzed the current BYOD issues for Educational Testing Service (ETS), which is a non-profit organization based in Princeton, New Jersey. Our findings have revealed a few major technical concerns relating to inadequate network and wireless infrastructure and the lack of a unified management and security platform. Thus, the team has recommended for ETS to implement Distributed Intelligence Architecture, network optimization and Enterprise Mobility Management (EMM) to address and resolve their current issues and risks. In conclusion, companies are beginning to seize this transition in order to become competitive and productive in the workplace; however the unprecedented demands on the corporate network and risk to data security are critical aspects that need to be evaluated on an on-going basis. With this analysis, organizations can review, evaluate and implement the proposed solutions and best practices to address the most common BYOD-related issues that companies are facing these days. However, organizations should continually research the latest technologies that may be available and implement solutions that specifically meet their issues

    Some security issues for web based frameworks

    Get PDF
    This report investigates whether a vulnerability found in one web framework may be used to find a vulnerability in a different web framework. To test this hypothesis, several open source applications were installed in a secure test environment together with security analysis tools. Each one of the applications were developed using a different software framework. The results show that a vulnerability identified in one framework can often be used to find similar vulnerabilities in other frameworks. Crosssite scripting security issues are the most likely to succeed when being applied to more than one framework

    Understanding IoT Security Through the Data Crystal Ball: Where We Are Now and Where We Are Going To Be

    Get PDF
    Inspired by the boom of the consumer IoT market, many device manufacturers, new start-up companies and technology behemoths have jumped into the space. Indeed, in a span of less than 5 years, we have experienced the manifestation of an array of solutions for the smart home, smart cities and even smart cars. Unfortunately, the exciting utility and rapid marketization of IoTs, come at the expense of privacy and security. Online and industry reports, and academic work have revealed a number of attacks on IoT systems, resulting in privacy leakage, property loss and even large-scale availability problems on some of the most influential Internet services (e.g. Netflix, Twitter). To mitigate such threats, a few new solutions have been proposed. However, it is still less clear what are the impacts they can have on the IoT ecosystem. In this work, we aim to perform a comprehensive study on reported attacks and defenses in the realm of IoTs aiming to find out what we know, where the current studies fall short and how to move forward. To this end, we first build a toolkit that searches through massive amount of online data using semantic analysis to identify over 3000 IoT-related articles (papers, reports and news). Further, by clustering such collected data using machine learning technologies, we are able to compare academic views with the findings from industry and other sources, in an attempt to understand the gaps between them, the trend of the IoT security risks and new problems that need further attention. We systemize this process, by proposing a taxonomy for the IoT ecosystem and organizing IoT security into five problem areas. We use this taxonomy as a beacon to assess each IoT work across a number of properties we define. Our assessment reveals that despite the acknowledged and growing concerns on IoT from both industry and academia, relevant security and privacy problems are far from solved. We discuss how each proposed solution can be applied to a problem area and highlight their strengths, assumptions and constraints. We stress the need for a security framework for IoT vendors and discuss the trend of shifting security liability to external or centralized entities. We also identify open research problems and provide suggestions towards a secure IoT ecosystem

    Electronic security - risk mitigation in financial transactions : public policy issues

    Get PDF
    This paper builds on a previous series of papers (see Claessens, Glaessner, and Klingebiel, 2001, 2002) that identified electronic security as a key component to the delivery of electronic finance benefits. This paper and its technical annexes (available separately at http://www1.worldbank.org/finance/) identify and discuss seven key pillars necessary to fostering a secure electronic environment. Hence, it is intended for those formulating broad policies in the area of electronic security and those working with financial services providers (for example, executives and management). The detailed annexes of this paper are especially relevant for chief information and security officers responsible for establishing layered security. First, this paper provides definitions of electronic finance and electronic security and explains why these issues deserve attention. Next, it presents a picture of the burgeoning global electronic security industry. Then it develops a risk-management framework for understanding the risks and tradeoffs inherent in the electronic security infrastructure. It also provides examples of tradeoffs that may arise with respect to technological innovation, privacy, quality of service, and security in designing an electronic security policy framework. Finally, it outlines issues in seven interrelated areas that often need attention in building an adequate electronic security infrastructure. These are: 1) The legal framework and enforcement. 2) Electronic security of payment systems. 3) Supervision and prevention challenges. 4) The role of private insurance as an essential monitoring mechanism. 5) Certification, standards, and the role of the public and private sectors. 6) Improving the accuracy of information on electronic security incidents and creating better arrangements for sharing this information. 7) Improving overall education on these issues as a key to enhancing prevention.Knowledge Economy,Labor Policies,International Terrorism&Counterterrorism,Payment Systems&Infrastructure,Banks&Banking Reform,Education for the Knowledge Economy,Knowledge Economy,Banks&Banking Reform,International Terrorism&Counterterrorism,Governance Indicators

    Factors Impacting Key Management Effectiveness in Secured Wireless Networks

    Get PDF
    The use of a Public Key Infrastructure (PKI) offers a cryptographic solution that can overcome many, but not all, of the MANET security problems. One of the most critical aspects of a PKI system is how well it implements Key Management. Key Management deals with key generation, key storage, key distribution, key updating, key revocation, and certificate service in accordance with security policies over the lifecycle of the cryptography. The approach supported by traditional PKI works well in fixed wired networks, but it may not appropriate for MANET due to the lack of fixed infrastructure to support the PKI. This research seeks to identify best practices in securing networks which may be applied to new network architectures

    Secure service proxy : a CoAP(s) intermediary for a securer and smarter web of things

    Get PDF
    As the IoT continues to grow over the coming years, resource-constrained devices and networks will see an increase in traffic as everything is connected in an open Web of Things. The performance- and function-enhancing features are difficult to provide in resource-constrained environments, but will gain importance if the WoT is to be scaled up successfully. For example, scalable open standards-based authentication and authorization will be important to manage access to the limited resources of constrained devices and networks. Additionally, features such as caching and virtualization may help further reduce the load on these constrained systems. This work presents the Secure Service Proxy (SSP): a constrained-network edge proxy with the goal of improving the performance and functionality of constrained RESTful environments. Our evaluations show that the proposed design reaches its goal by reducing the load on constrained devices while implementing a wide range of features as different adapters. Specifically, the results show that the SSP leads to significant savings in processing, network traffic, network delay and packet loss rates for constrained devices. As a result, the SSP helps to guarantee the proper operation of constrained networks as these networks form an ever-expanding Web of Things

    Supporting Cyber-Physical Systems with Wireless Sensor Networks: An Outlook of Software and Services

    Get PDF
    Sensing, communication, computation and control technologies are the essential building blocks of a cyber-physical system (CPS). Wireless sensor networks (WSNs) are a way to support CPS as they provide fine-grained spatial-temporal sensing, communication and computation at a low premium of cost and power. In this article, we explore the fundamental concepts guiding the design and implementation of WSNs. We report the latest developments in WSN software and services for meeting existing requirements and newer demands; particularly in the areas of: operating system, simulator and emulator, programming abstraction, virtualization, IP-based communication and security, time and location, and network monitoring and management. We also reflect on the ongoing efforts in providing dependable assurances for WSN-driven CPS. Finally, we report on its applicability with a case-study on smart buildings
    corecore