10,434 research outputs found

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Active Attack on User Load Achieving Pilot Design in Massive MIMO Networks

    Get PDF
    In this paper, we propose an active attacking strategy on a massive multiple-input multiple-output (MIMO) network, where the pilot sequences are obtained using the user load-achieving pilot sequence design. The user load-achieving design ensures that the signal-to-interference-plus-noise ratio (SINR) requirements of all the users in the massive MIMO networks are guaranteed even in the presence of pilot contamination. However, this design has some vulnerabilities, such as one known pilot sequence and the correlation among the pilot sequences, that may be exploited by active attackers. In this work, we first identify the potential vulnerabilities in the user load-achieving pilot sequence design and then, accordingly, develop an active attacking strategy on the network. In the proposed attacking strategy, the active attackers transmit known pilot sequences in the uplink training and artificial noise in the downlink data transmission. Our examination demonstrates that the per-cell user load region is significantly reduced by the proposed attacking strategy. As a result of the reduced per-cell user load region, the SINR requirements of all the users are no longer guaranteed in the presence of the active attackers. Specifically, for the worst affected users the SINR requirements may not be ensured even with infinite antennas at the base station.Comment: Accepted in IEEE GlobeCOM 201

    A Joint Approach for Low-Complexity Channel Estimation in 5G Massive MIMO Systems

    Full text link
    [EN] Traditional Minimum Mean Square Error (MMSE) detection is widely used in wireless communications, however, it introduces matrix inversion and has a higher computational complexity. For massive Multiple-input Multiple-output (MIMO) systems, this detection complexity is very high due to its huge channel matrix dimension. Therefore, low-complexity detection technology has become a hot topic in the industry. Aiming at the problem of high computational complexity of the massive MIMO channel estimation, this paper presents a low-complexity algorithm for efficient channel estimation. The proposed algorithm is based on joint Singular Value Decomposition (SVD) and Iterative Least Square with Projection (SVD-ILSP) which overcomes the drawback of finite sample data assumption of the covariance matrix in the existing SVD-based semi-blind channel estimation scheme. Simulation results show that the proposed scheme can effectively reduce the deviation, improve the channel estimation accuracy, mitigate the impact of pilot contamination and obtain accurate CSI with low overhead and computational complexity.This research was funded by Ministerio de Economia, Industria y Competitividad, Gobierno de Espana grant number BIA2017-87573-C2-2-P.Bangash, K.; Khan, I.; Lloret, J.; León Fernández, A. (2018). A Joint Approach for Low-Complexity Channel Estimation in 5G Massive MIMO Systems. Electronics. 7(10). https://doi.org/10.3390/electronics7100218S710Gao, Z., Dai, L., Lu, Z., Yuen, C., & Wang, Z. (2014). Super-Resolution Sparse MIMO-OFDM Channel Estimation Based on Spatial and Temporal Correlations. IEEE Communications Letters, 18(7), 1266-1269. doi:10.1109/lcomm.2014.2325027Biswas, S., Masouros, C., & Ratnarajah, T. (2016). Performance Analysis of Large Multiuser MIMO Systems With Space-Constrained 2-D Antenna Arrays. IEEE Transactions on Wireless Communications, 15(5), 3492-3505. doi:10.1109/twc.2016.2522419Khan, I., Zafar, M., Jan, M., Lloret, J., Basheri, M., & Singh, D. (2018). Spectral and Energy Efficient Low-Overhead Uplink and Downlink Channel Estimation for 5G Massive MIMO Systems. Entropy, 20(2), 92. doi:10.3390/e20020092Khan, I., & Singh, D. (2018). Efficient compressive sensing based sparse channel estimation for 5G massive MIMO systems. AEU - International Journal of Electronics and Communications, 89, 181-190. doi:10.1016/j.aeue.2018.03.038Khan, I., Singh, M., & Singh, D. (2018). Compressive Sensing-based Sparsity Adaptive Channel Estimation for 5G Massive MIMO Systems. Applied Sciences, 8(5), 754. doi:10.3390/app8050754Arshad, M., Khan, I., Lloret, J., & Bosch, I. (2018). A Novel Multi-User Codebook Design for 5G in 3D-MIMO Heterogeneous Networks. Electronics, 7(8), 144. doi:10.3390/electronics7080144Shahjehan, W., Shah, S., Lloret, J., & Bosch, I. (2018). Joint Interference and Phase Alignment among Data Streams in Multicell MIMO Broadcasting. Applied Sciences, 8(8), 1237. doi:10.3390/app8081237Jose, J., Ashikhmin, A., Marzetta, T. L., & Vishwanath, S. (2011). Pilot Contamination and Precoding in Multi-Cell TDD Systems. IEEE Transactions on Wireless Communications, 10(8), 2640-2651. doi:10.1109/twc.2011.060711.101155Jose, J., Ashikhmin, A., Marzetta, T. L., & Vishwanath, S. (2009). Pilot contamination problem in multi-cell TDD systems. 2009 IEEE International Symposium on Information Theory. doi:10.1109/isit.2009.5205814Jose, J., Ashikhmin, A., Whiting, P., & Vishwanath, S. (2011). Channel Estimation and Linear Precoding in Multiuser Multiple-Antenna TDD Systems. IEEE Transactions on Vehicular Technology, 60(5), 2102-2116. doi:10.1109/tvt.2011.2146797Marzetta, T. L. (2010). Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas. IEEE Transactions on Wireless Communications, 9(11), 3590-3600. doi:10.1109/twc.2010.092810.091092Rusek, F., Persson, D., Buon Kiong Lau, Larsson, E. G., Marzetta, T. L., & Tufvesson, F. (2013). Scaling Up MIMO: Opportunities and Challenges with Very Large Arrays. IEEE Signal Processing Magazine, 30(1), 40-60. doi:10.1109/msp.2011.2178495Chang, Z., Wang, Z., Guo, X., Han, Z., & Ristaniemi, T. (2017). Energy-Efficient Resource Allocation for Wireless Powered Massive MIMO System With Imperfect CSI. IEEE Transactions on Green Communications and Networking, 1(2), 121-130. doi:10.1109/tgcn.2017.2696161Prasad, K. N. R. S. V., Hossain, E., & Bhargava, V. K. (2017). Energy Efficiency in Massive MIMO-Based 5G Networks: Opportunities and Challenges. IEEE Wireless Communications, 24(3), 86-94. doi:10.1109/mwc.2016.1500374wcFodor, G., Rajatheva, N., Zirwas, W., Thiele, L., Kurras, M., Guo, K., … De Carvalho, E. (2017). An Overview of Massive MIMO Technology Components in METIS. IEEE Communications Magazine, 55(6), 155-161. doi:10.1109/mcom.2017.1600802Lu, L., Li, G. Y., Swindlehurst, A. L., Ashikhmin, A., & Zhang, R. (2014). An Overview of Massive MIMO: Benefits and Challenges. IEEE Journal of Selected Topics in Signal Processing, 8(5), 742-758. doi:10.1109/jstsp.2014.2317671Larsson, E. G., Edfors, O., Tufvesson, F., & Marzetta, T. L. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52(2), 186-195. doi:10.1109/mcom.2014.6736761Yi Xu, Guosen Yue, & Shiwen Mao. (2014). User Grouping for Massive MIMO in FDD Systems: New Design Methods and Analysis. IEEE Access, 2, 947-959. doi:10.1109/access.2014.2353297Duly, A. J., Kim, T., Love, D. J., & Krogmeier, J. V. (2014). Closed-Loop Beam Alignment for Massive MIMO Channel Estimation. IEEE Communications Letters, 18(8), 1439-1442. doi:10.1109/lcomm.2014.2316157Choi, J., Love, D. J., & Bidigare, P. (2014). Downlink Training Techniques for FDD Massive MIMO Systems: Open-Loop and Closed-Loop Training With Memory. IEEE Journal of Selected Topics in Signal Processing, 8(5), 802-814. doi:10.1109/jstsp.2014.2313020Noh, S., Zoltowski, M. D., & Love, D. J. (2016). Training Sequence Design for Feedback Assisted Hybrid Beamforming in Massive MIMO Systems. IEEE Transactions on Communications, 64(1), 187-200. doi:10.1109/tcomm.2015.2498184Jiang, Z., Molisch, A. F., Caire, G., & Niu, Z. (2015). Achievable Rates of FDD Massive MIMO Systems With Spatial Channel Correlation. IEEE Transactions on Wireless Communications, 14(5), 2868-2882. doi:10.1109/twc.2015.2396058Adhikary, A., Junyoung Nam, Jae-Young Ahn, & Caire, G. (2013). Joint Spatial Division and Multiplexing—The Large-Scale Array Regime. IEEE Transactions on Information Theory, 59(10), 6441-6463. doi:10.1109/tit.2013.2269476Talwar, S., Viberg, M., & Paulraj, A. (1996). Blind separation of synchronous co-channel digital signals using an antenna array. I. Algorithms. IEEE Transactions on Signal Processing, 44(5), 1184-1197. doi:10.1109/78.502331Comon, P., & Golub, G. H. (1990). Tracking a few extreme singular values and vectors in signal processing. Proceedings of the IEEE, 78(8), 1327-1343. doi:10.1109/5.5832

    Massive MIMO is a Reality -- What is Next? Five Promising Research Directions for Antenna Arrays

    Full text link
    Massive MIMO (multiple-input multiple-output) is no longer a "wild" or "promising" concept for future cellular networks - in 2018 it became a reality. Base stations (BSs) with 64 fully digital transceiver chains were commercially deployed in several countries, the key ingredients of Massive MIMO have made it into the 5G standard, the signal processing methods required to achieve unprecedented spectral efficiency have been developed, and the limitation due to pilot contamination has been resolved. Even the development of fully digital Massive MIMO arrays for mmWave frequencies - once viewed prohibitively complicated and costly - is well underway. In a few years, Massive MIMO with fully digital transceivers will be a mainstream feature at both sub-6 GHz and mmWave frequencies. In this paper, we explain how the first chapter of the Massive MIMO research saga has come to an end, while the story has just begun. The coming wide-scale deployment of BSs with massive antenna arrays opens the door to a brand new world where spatial processing capabilities are omnipresent. In addition to mobile broadband services, the antennas can be used for other communication applications, such as low-power machine-type or ultra-reliable communications, as well as non-communication applications such as radar, sensing and positioning. We outline five new Massive MIMO related research directions: Extremely large aperture arrays, Holographic Massive MIMO, Six-dimensional positioning, Large-scale MIMO radar, and Intelligent Massive MIMO.Comment: 20 pages, 9 figures, submitted to Digital Signal Processin
    corecore