7 research outputs found

    Towards Low Latency and Resource-Efficient FPGA Implementations of the MUSIC Algorithm for Direction of Arrival Estimation

    Get PDF
    The estimation of the Direction of Arrival (DoA) is one of the most critical parameters for target recognition, identification and classification. MUltiple SIgnal Classification (MUSIC) is a powerful technique for DoA estimation. The algorithm requires complex mathematical operations like the computation of the covariance matrix for the input signals, eigenvalue decomposition and signal peak search. All these signal processing operations make real-time and resource-efficient implementation of the MUSIC algorithm on Field Programmable Gate Arrays (FPGAs) a challenge. In this paper, a novel design approach is proposed for the FPGA-implementation of the MUSIC algorithm. This approach enables a significant reduction in both FPGA resources and latency. In more detail, the proposed design enables the estimation of DoA in real-time scenarios in 2μ sec with 30% to 50% fewer resources as compared to existing techniques.The work of Pedro Reviriego was supported in part by the Architecting Intelligent Cost-effective Central Offices to enable 5G Tactile Internet (ACHILLES) through the Spanish Ministry of Economy and Competitivity under Project PID2019-104207RB-I00, in part by the Madrid Government (Comunidad de Madrid-Spain) through the Multiannual Agreement with Universidad Carlos III de Madrid (UC3M) in the line of Excellence of University Professors under Grant EPUC3M21, and in part by the Context of the V Plan Regional de Investigación Científica e Innovación Tecnológica (V PRICIT) (Regional Program of Research and Technological Innovation)

    HIGH PERFORMANCE, LOW COST SUBSPACE DECOMPOSITION AND POLYNOMIAL ROOTING FOR REAL TIME DIRECTION OF ARRIVAL ESTIMATION: ANALYSIS AND IMPLEMENTATION

    Get PDF
    This thesis develops high performance real-time signal processing modules for direction of arrival (DOA) estimation for localization systems. It proposes highly parallel algorithms for performing subspace decomposition and polynomial rooting, which are otherwise traditionally implemented using sequential algorithms. The proposed algorithms address the emerging need for real-time localization for a wide range of applications. As the antenna array size increases, the complexity of signal processing algorithms increases, making it increasingly difficult to satisfy the real-time constraints. This thesis addresses real-time implementation by proposing parallel algorithms, that maintain considerable improvement over traditional algorithms, especially for systems with larger number of antenna array elements. Singular value decomposition (SVD) and polynomial rooting are two computationally complex steps and act as the bottleneck to achieving real-time performance. The proposed algorithms are suitable for implementation on field programmable gated arrays (FPGAs), single instruction multiple data (SIMD) hardware or application specific integrated chips (ASICs), which offer large number of processing elements that can be exploited for parallel processing. The designs proposed in this thesis are modular, easily expandable and easy to implement. Firstly, this thesis proposes a fast converging SVD algorithm. The proposed method reduces the number of iterations it takes to converge to correct singular values, thus achieving closer to real-time performance. A general algorithm and a modular system design are provided making it easy for designers to replicate and extend the design to larger matrix sizes. Moreover, the method is highly parallel, which can be exploited in various hardware platforms mentioned earlier. A fixed point implementation of proposed SVD algorithm is presented. The FPGA design is pipelined to the maximum extent to increase the maximum achievable frequency of operation. The system was developed with the objective of achieving high throughput. Various modern cores available in FPGAs were used to maximize the performance and details of these modules are presented in detail. Finally, a parallel polynomial rooting technique based on Newton’s method applicable exclusively to root-MUSIC polynomials is proposed. Unique characteristics of root-MUSIC polynomial’s complex dynamics were exploited to derive this polynomial rooting method. The technique exhibits parallelism and converges to the desired root within fixed number of iterations, making this suitable for polynomial rooting of large degree polynomials. We believe this is the first time that complex dynamics of root-MUSIC polynomial were analyzed to propose an algorithm. In all, the thesis addresses two major bottlenecks in a direction of arrival estimation system, by providing simple, high throughput, parallel algorithms

    FPGA Hardware Implementation of DOA Estimation Algorithm Employing LU Decomposition

    Get PDF
    In this paper, authors present their work on field-programmable gate array (FPGA) hardware implementation of proposed direction of arrival estimation algorithms employing LU factorization. Both L and U matrices were considered in computing the angle estimates. Hardware implementation was done on a Virtex-5 FPGA and its experimental verification was performed using National Instruments PXI platform which provides hardware modules for data acquisition, RF down-conversion, digitization, etc. A uniform linear array consisting of four antenna elements was deployed at the receiver. LabVIEW FPGA modules with high throughput math functions were used for implementing the proposed algorithms. MATLAB simulations of the proposed algorithms were also performed to validate the efficacy of the proposed algorithms prior to hardware implementation of the same. Both MATLAB simulation and experimental verification establish the superiority of the proposed methods over existing methods reported in the literature, such as QR decomposition-based implementations. FPGA compilation results report low resource usage and faster computation time compared with the QR-based hardware implementation. Performance comparison in terms of estimation accuracy, percentage resource utilization, and processing time is also presented for different data and matrix sizes

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion

    Design of Jacobi EVD processor based on CORDIC for DOA estimation with MUSIC algorithm

    No full text
    corecore