337 research outputs found

    Realization of reactive control for multi purpose mobile agents

    Get PDF
    Mobile robots are built for different purposes, have different physical size, shape, mechanics and electronics. They are required to work in real-time, realize more than one goal simultaneously, hence to communicate and cooperate with other agents. The approach proposed in this paper for mobile robot control is reactive and has layered structure that supports multi sensor perception. Potential field method is implemented for both obstacle avoidance and goal tracking. However imaginary forces of the obstacles and of the goal point are separately treated, and then resulting behaviors are fused with the help of the geometry. Proposed control is tested on simulations where different scenarios are studied. Results have confirmed the high performance of the method

    Next generation mine countermeasures for the very shallow water zone in support of amphibious operations

    Get PDF
    This report describes system engineering efforts exploring next generation mine countermeasure (MCM) systems to satisfy high priority capability gaps in the Very Shallow Water (VSW) zone in support of amphibious operations. A thorough exploration of the problem space was conducted, including stakeholder analysis, MCM threat analysis, and current and future MCM capability research. Solution-neutral requirements and functions were developed for a bounded next generation system. Several alternative architecture solutions were developed that included a critical evaluation that compared performance and cost. The resulting MCM system effectively removes the man from the minefield through employment of autonomous capability, reduces operator burden with sensor data fusion and processing, and provides a real-time communication for command and control (C2) support to reduce or eliminate post mission analysis.http://archive.org/details/nextgenerationmi109456968N

    Reference Model for Interoperability of Autonomous Systems

    Get PDF
    This thesis proposes a reference model to describe the components of an Un-manned Air, Ground, Surface, or Underwater System (UxS), and the use of a single Interoperability Building Block to command, control, and get feedback from such vehicles. The importance and advantages of such a reference model, with a standard nomenclature and taxonomy, is shown. We overview the concepts of interoperability and some efforts to achieve common refer-ence models in other areas. We then present an overview of existing un-manned systems, their history, characteristics, classification, and missions. The concept of Interoperability Building Blocks (IBB) is introduced to describe standards, protocols, data models, and frameworks, and a large set of these are analyzed. A new and powerful reference model for UxS, named RAMP, is proposed, that describes the various components that a UxS may have. It is a hierarchical model with four levels, that describes the vehicle components, the datalink, and the ground segment. The reference model is validated by showing how it can be applied in various projects the author worked on. An example is given on how a single standard was capable of controlling a set of heterogeneous UAVs, USVs, and UGVs

    A survey on uninhabited underwater vehicles (UUV)

    Get PDF
    ASME Early Career Technical Conference, ASME ECTC, October 2-3, 2009, Tuscaloosa, Alabama, USAThis work presents the initiation of our underwater robotics research which will be focused on underwater vehicle-manipulator systems. Our aim is to build an underwater vehicle with a robotic manipulator which has a robust system and also can compensate itself under the influence of the hydrodynamic effects. In this paper, overview of the existing underwater vehicle systems, thruster designs, their dynamic models and control architectures are given. The purpose and results of the existing methods in underwater robotics are investigated

    A hardware-anywhere-in-the-loop simulator for dynamic real-time analysis of electric propulsion systems

    Get PDF
    This work introduces a low-level real-time vehicle simulator with hardware-anywhere-in-the-loop (HAIL) capability. Vehicle dynamics are simulated on a high-performance workstation running a real-time operating system. The vehicle’s battery pack is both modeled in simulation and interfaced externally, providing the option of establishing a baseline performance in the simulation, and then evaluating candidate battery packs against these results. This simulation test bed is applied to an electric vehicle and an unmanned underwater vehicle, two vehicle types that present very different loads to the batteries. The HAIL platform is validated against the verified simulated performance of both vehicle models, achieving an error of less than 2% across 25 trials. This paves the way for expansion to include an electric drive and dynamometer, as well as peripheral power electronics systems

    Unmanned Vehicle Systems & Operations on Air, Sea, Land

    Get PDF
    Unmanned Vehicle Systems & Operations On Air, Sea, Land is our fourth textbook in a series covering the world of Unmanned Aircraft Systems (UAS) and Counter Unmanned Aircraft Systems (CUAS). (Nichols R. K., 2018) (Nichols R. K., et al., 2019) (Nichols R. , et al., 2020)The authors have expanded their purview beyond UAS / CUAS systems. Our title shows our concern for growth and unique cyber security unmanned vehicle technology and operations for unmanned vehicles in all theaters: Air, Sea and Land – especially maritime cybersecurity and China proliferation issues. Topics include: Information Advances, Remote ID, and Extreme Persistence ISR; Unmanned Aerial Vehicles & How They Can Augment Mesonet Weather Tower Data Collection; Tour de Drones for the Discerning Palate; Underwater Autonomous Navigation & other UUV Advances; Autonomous Maritime Asymmetric Systems; UUV Integrated Autonomous Missions & Drone Management; Principles of Naval Architecture Applied to UUV’s; Unmanned Logistics Operating Safely and Efficiently Across Multiple Domains; Chinese Advances in Stealth UAV Penetration Path Planning in Combat Environment; UAS, the Fourth Amendment and Privacy; UV & Disinformation / Misinformation Channels; Chinese UAS Proliferation along New Silk Road Sea / Land Routes; Automaton, AI, Law, Ethics, Crossing the Machine – Human Barrier and Maritime Cybersecurity.Unmanned Vehicle Systems are an integral part of the US national critical infrastructure The authors have endeavored to bring a breadth and quality of information to the reader that is unparalleled in the unclassified sphere. Unmanned Vehicle (UV) Systems & Operations On Air, Sea, Land discusses state-of-the-art technology / issues facing U.S. UV system researchers / designers / manufacturers / testers. We trust our newest look at Unmanned Vehicles in Air, Sea, and Land will enrich our students and readers understanding of the purview of this wonderful technology we call UV.https://newprairiepress.org/ebooks/1035/thumbnail.jp

    Design Concepts for a Hybrid Swimming and Walking Vehicle

    Get PDF
    AbstractThis paper describes the design and proposed control methods for a 6-legged swimming and walking robot that can be used in a variety of different transportation and equipment control applications above ground, under water and above water. Known as the TURTLE (Tele–operated Unmanned Robot for Telemetry and Legged Exploration), a prototype of this mobile robot is currently being designed and developed for experimental testing in the near future. It will be powered by rechargeable electric batteries (to be recharged by solar panels) and all of its actuators will be electric motors, each controlled and monitored by onboard microcontrollers supervised by an onboard master computer. The TURTLE will be fitted with several high-resolution digital cameras, 3D laser and sonar scanners, an IMU (Inertial Management Unit), electronic compass, GPS (satellite navigation) module, underwater sonar transceiver hardware and two or more types of long-distance wireless communications hardware. The first prototype of the TURTLE will focus on basic tasks such as remote video surveillance, 3D terrain surface scanning (above ground and underwater), basic swimming styles, basic walking styles, climbing over large rocks and walking over very rough ground and steep terrain. This paper describes the main objectives, basic performance specifications, functions and mechanical design solutions that have been developed so far for this project. It covers details of the various different swimming modes and feasible solutions for achieving the main design objectives
    corecore