646 research outputs found

    Automatic generation of fuzzy classification rules using granulation-based adaptive clustering

    Get PDF
    A central problem of fuzzy modelling is the generation of fuzzy rules that fit the data to the highest possible extent. In this study, we present a method for automatic generation of fuzzy rules from data. The main advantage of the proposed method is its ability to perform data clustering without the requirement of predefining any parameters including number of clusters. The proposed method creates data clusters at different levels of granulation and selects the best clustering results based on some measures. The proposed method involves merging clusters into new clusters that have a coarser granulation. To evaluate performance of the proposed method, three different datasets are used to compare performance of the proposed method to other classifiers: SVM classifier, FCM fuzzy classifier, subtractive clustering fuzzy classifier. Results show that the proposed method has better classification results than other classifiers for all the datasets used

    An Advanced Conceptual Diagnostic Healthcare Framework for Diabetes and Cardiovascular Disorders

    Full text link
    The data mining along with emerging computing techniques have astonishingly influenced the healthcare industry. Researchers have used different Data Mining and Internet of Things (IoT) for enrooting a programmed solution for diabetes and heart patients. However, still, more advanced and united solution is needed that can offer a therapeutic opinion to individual diabetic and cardio patients. Therefore, here, a smart data mining and IoT (SMDIoT) based advanced healthcare system for proficient diabetes and cardiovascular diseases have been proposed. The hybridization of data mining and IoT with other emerging computing techniques is supposed to give an effective and economical solution to diabetes and cardio patients. SMDIoT hybridized the ideas of data mining, Internet of Things, chatbots, contextual entity search (CES), bio-sensors, semantic analysis and granular computing (GC). The bio-sensors of the proposed system assist in getting the current and precise status of the concerned patients so that in case of an emergency, the needful medical assistance can be provided. The novelty lies in the hybrid framework and the adequate support of chatbots, granular computing, context entity search and semantic analysis. The practical implementation of this system is very challenging and costly. However, it appears to be more operative and economical solution for diabetes and cardio patients.Comment: 11 PAGE

    Data and Feature Reduction in Fuzzy Modeling through Particle Swarm Optimization

    Get PDF
    The study is concerned with data and feature reduction in fuzzy modeling. As these reduction activities are advantageous to fuzzy models in terms of both the effectiveness of their construction and the interpretation of the resulting models, their realization deserves particular attention. The formation of a subset of meaningful features and a subset of essential instances is discussed in the context of fuzzy-rule-based models. In contrast to the existing studies, which are focused predominantly on feature selection (namely, a reduction of the input space), a position advocated here is that a reduction has to involve both data and features to become efficient to the design of fuzzy model. The reduction problem is combinatorial in its nature and, as such, calls for the use of advanced optimization techniques. In this study, we use a technique of particle swarm optimization (PSO) as an optimization vehicle of forming a subset of features and data (instances) to design a fuzzy model. Given the dimensionality of the problem (as the search space involves both features and instances), we discuss a cooperative version of the PSO along with a clustering mechanism of forming a partition of the overall search space. Finally, a series of numeric experiments using several machine learning data sets is presented

    Stochastic information granules extraction for graph embedding and classification

    Get PDF
    3noopenGraphs are data structures able to efficiently describe real-world systems and, as such, have been extensively used in recent years by many branches of science, including machine learning engineering. However, the design of efficient graph-based pattern recognition systems is bottlenecked by the intrinsic problem of how to properly match two graphs. In this paper, we investigate a granular computing approach for the design of a general purpose graph-based classification system. The overall framework relies on the extraction of meaningful pivotal substructures on the top of which an embedding space can be build and in which the classification can be performed without limitations. Due to its importance, we address whether information can be preserved by performing stochastic extraction on the training data instead of performing an exhaustive extraction procedure which is likely to be unfeasible for large datasets. Tests on benchmark datasets show that stochastic extraction can lead to a meaningful set of pivotal substructures with a much lower memory footprint and overall computational burden, making the proposed strategies suitable also for dealing with big datasets.openAccademicoBaldini, Luca; Martino, Alessio; Rizzi, AntonelloBaldini, Luca; Martino, Alessio; Rizzi, Antonell

    Construction of Multilevel Structure for Avian Influenza Virus System Based on Granular Computing

    Get PDF
    corecore