200 research outputs found

    Optimization of new Chinese Remainder theorems using special moduli sets

    Get PDF
    The residue number system (RNS) is an integer number representation system, which is capable of supporting parallel, high-speed arithmetic. This system also offers some useful properties for error detection, error correction and fault tolerance. It has numerous applications in computation-intensive digital signal processing (DSP) operations, like digital filtering, convolution, correlation, Discrete Fourier Transform, Fast Fourier Transform, direct digital frequency synthesis, etc. The residue to binary conversion is based on Chinese Remainder Theorem (CRT) and Mixed Radix Conversion (MRC). However, the CRT requires a slow large modulo operation while the MRC requires finding the mixed radix digits which is a slow process. The new Chinese Remainder Theorems (CRT I, CRT II and CRT III) make the computations faster and efficient without any extra overheads. But, New CRTs are hardware intensive as they require many inverse modulus operators, modulus operators, multipliers and dividers. Dividers and inverse modulus operators in turn needs many half and full adders and subtractors. So, some kind of optimization is necessary to implement these theorems practically. In this research, for the optimization, new both co-prime and non co-prime multi modulus sets are proposed that simplify the new Chinese Remainder theorems by eliminating the huge summations, inverse modulo operators, and dividers. Furthermore, the proposed hardware optimization removes the multiplication terms in the theorems, which further simplifies the implementation

    Pipelined Two-Operand Modular Adders

    Get PDF
    Pipelined two-operand modular adder (TOMA) is one of basic components used in digital signal processing (DSP) systems that use the residue number system (RNS). Such modular adders are used in binary/residue and residue/binary converters, residue multipliers and scalers as well as within residue processing channels. The design of pipelined TOMAs is usually obtained by inserting an appriopriate number of latch layers inside a nonpipelined TOMA structure. Hence their area is also determined by the number of latches and the delay by the number of latch layers. In this paper we propose a new pipelined TOMA that is based on a new TOMA, that has the smaller area and smaller delay than other known structures. Comparisons are made using data from the very large scale of integration (VLSI) standard cell library

    Area-Efficient FPGA Implementation of Minimalistic Convolutional Neural Network Using Residue Number System

    Get PDF
    Convolutional Neural Networks (CNN) is the promising tool for solving task of image recognition in computer vision systems. However, the most known implementation of CNNs require a significant amount of memory for storing weights in training and work. To reduce the resource costs of CNN implementation we propose the architecture that separated on hardware and software parts for performance optimization. Also we propose to use Residue Number System (RNS) arithmetic in the hardware part which implements the convolutional layer of CNN. Software simulation using Matlab 2017b shows that CNN with a minimum number of layers can be quickly and successfully trained. Hardware simulation using FPGA Kintex7 xc7k70tfbg484-2 demonstrates that using RNS in convolutional layer of CNN allows to reduce hardware costs by 32% compared with the traditional approach based on the binary number system

    Fast Overflow Detection Scheme by Operands Examinations Method for Length Three Moduli Sets

    Get PDF
    In this paper, we present a fast overflow detection scheme by Operands Examination Method (OEM) for 3-Moduli Sets. The method examines the sum of the Mixed Radix Digits (MRDs) computed using the Mixed Radix Conversion (MRC) method to detect overflow for the sum of operands. It is observed that by reducing larger numbers into smaller numbers, the OEM approach makes computations easier and faster. The proposed scheme is further implemented on the Moduli Set for validation purposes. Theoretically, the scheme proves to be more efficient in detecting overflow as compared to current existing overflow detection schemes. Keywords: Residue Number System, Operands Examination Method, Overflow Detection, Mixed Radix Digits, Mixed Radix Conversion

    FIR Filter Implementation Based on the RNS with Diminished-1 Encoded Channel

    Get PDF
    • …
    corecore