612 research outputs found

    On The Design Of Physical Layer Rateless Codes

    Get PDF
    Codes that are capable of generating any number of encoded symbols from a given number of source symbols are called rateless codes. Luby transform (LT) codes are the first practical realization of rateless codes while Raptor codes are constructed by serially concatenating LT codes with high-rate outer low-density parity-check (LDPC) codes. Although these codes were originally developed for binary erasure channel (BEC), due to their rateless feature, they are being investigated and designed for their use in noisy channels. It is known that LT codes are the irregular non-systematic rateless counterpart of low-density generator-matrix (LDGM) codes. Therefore, the first part of our work is focused on LDGM codes and their serially concatenated scheme called serially concatenated LDGM (SCLDGM) codes. Though single LDGM codes are asymptotically bad codes, the SCLDGM codes are known to perform close to the Shannon limit. We first study the asymptotic behaviour of LDGM codes using a discretized density evolution method. We then show that the DDE method can be used in two-steps to provide the detailed asymptotic performance analysis of SCLDGM codes. We also provide the detailed error-floor analysis of both the LDGM and SCLDGM codes. We also prove a necessary condition for the successful decoding of such concatenated codes under sum-product (SP) decoding in binary input additive white Gaussian noise (BIAWGN) channels. Based on this necessary condition, we then develop a DDE-based optimization approach which can be used to optimize such concatenated codes in general. We present both the asymptotic performance and simulation results of our optimized SCLDGM codes that perform within 0.26 dB to the Shannon limit in BIAWGN channels. Secondly, we focus on the asymptotic analysis and optimization design of LT and Raptor codes over BIAWGN channels. We provide the exact asymptotic performance of LT codes using the DDE method. We apply the concept of the two-step DDE method to the Raptor codes and obtain their exact asymptotic performance in BIAWGN channels. We show that the existing Raptor codes using solely the same output degree distribution can perform within 0.4 dB to the Shannon limit for various realized code-rates. We then develop a DDE-based optimization technique to optimally design such physical layer Raptor codes. Our optimized Raptor codes are shown to perform within 0.2 dB to the Shannon limit for most of the realized code-rates. We also provide the asymptotic curves, decoding thresholds, and simulation results showing that our optimized Raptor codes outperform the existing Raptor codes in BIAWGN channels. Finally, we present the asymptotic analysis and optimization design of systematic version of these codes namely systematic LT and systematic Raptor codes as well

    Spatially Coupled Turbo-Like Codes

    Get PDF
    The focus of this thesis is on proposing and analyzing a powerful class of codes on graphs---with trellis constraints---that can simultaneously approach capacity and achieve very low error floor. In particular, we propose the concept of spatial coupling for turbo-like code (SC-TC) ensembles and investigate the impact of coupling on the performance of these codes. The main elements of this study can be summarized by the following four major topics. First, we considered the spatial coupling of parallel concatenated codes (PCCs), serially concatenated codes (SCCs), and hybrid concatenated codes (HCCs).We also proposed two extensions of braided convolutional codes (BCCs) to higher coupling memories. Second, we investigated the impact of coupling on the asymptotic behavior of the proposed ensembles in term of the decoding thresholds. For that, we derived the exact density evolution (DE) equations of the proposed SC-TC ensembles over the binary erasure channel. Using the DE equations, we found the thresholds of the coupled and uncoupled ensembles under belief propagation (BP) decoding for a wide range of rates. We also computed the maximum a-posteriori (MAP) thresholds of the underlying uncoupled ensembles. Our numerical results confirm that TCs have excellent MAP thresholds, and for a large enough coupling memory, the BP threshold of an SC-TC ensemble improves to the MAP threshold of the underlying TC ensemble. This phenomenon is called threshold saturation and we proved its occurrence for SC-TCs by use of a proof technique based on the potential function of the ensembles.Third, we investigated and discussed the performance of SC-TCs in the finite length regime. We proved that under certain conditions the minimum distance of an SC-TCs is either larger or equal to that of its underlying uncoupled ensemble. Based on this fact, we performed a weight enumerator (WE) analysis for the underlying uncoupled ensembles to investigate the error floor performance of the SC-TC ensembles. We computed bounds on the error rate performance and minimum distance of the TC ensembles. These bounds indicate very low error floor for SCC, HCC, and BCC ensembles, and show that for HCC, and BCC ensembles, the minimum distance grows linearly with the input block length.The results from the DE and WE analysis demonstrate that the performance of TCs benefits from spatial coupling in both waterfall and error floor regions. While uncoupled TC ensembles with close-to-capacity performance exhibit a high error floor, our results show that SC-TCs can simultaneously approach capacity and achieve very low error floor.Fourth, we proposed a unified ensemble of TCs that includes all the considered TC classes. We showed that for each of the original classes of TCs, it is possible to find an equivalent ensemble by proper selection of the design parameters in the unified ensemble. This unified ensemble not only helps us to understand the connections and trade-offs between the TC ensembles but also can be considered as a bridge between TCs and generalized low-density parity check codes

    Polar Coding Schemes for Cooperative Transmission Systems

    Get PDF
    : In this thesis, a serially-concatenated coding scheme with a polar code as the outer code and a low density generator matrix (LDGM) code as the inner code is firstly proposed. It is shown that that the proposed scheme provides a method to improve significantly the low convergence of polar codes and the high error floor of LDGM codes while keeping the advantages of both such as the low encoding and decoding complexity. The bit error rate results show that the proposed scheme by reasonable design have the potential to approach a performance close to the capacity limit and avoid error floor effectively. Secondly, a novel transmission protocol based on polar coding is proposed for the degraded half-duplex relay channel. In the proposed protocol, the relay only needs to forward a part of the decoded source message that the destination needs according to the exquisite nested structure of polar codes. It is proved that the scheme can achieve the capacity of the half-duplex relay channel while enjoying low encoding/decoding complexity. By modeling the practical system, we verify that the proposed scheme outperforms the conventional scheme designed by low-density parity-check codes by simulations. Finally, a generalized partial information relaying protocol is proposed for degraded multiple-relay networks with orthogonal receiver components (MRN-ORCs). In such a protocol, each relay node decodes the received source message with the help of partial information from previous nodes and re-encodes part of the decoded message for transmission to satisfy the decoding requirements for the following relay node or the destination node. For the design of polar codes, the nested structures are constructed based on this protocol and the information sets corresponding to the partial messages forwarded are also calculated. It is proved that the proposed scheme achieves the theoretical capacity of the degraded MRN-ORCs while still retains the low-complexity feature of polar codes

    An optimization method for designing high rate and high performance SCTCM systems with in-line interleavers

    Get PDF
    We present a method for designing high-rate, high-performance SCTCM systems with in-line interleavers. Using in-line EXIT charts and ML performance analysis, we develop criteria for choosing constituent codes and optimization methods for selecting the best ones. To illustrate our methods, we show that an optimized SCTCM system with an in-line interleaver for rate r = 5/6 and 64QAM has better performance than other turbo-like TCMs with the same parameters

    Spatially Coupled Turbo Codes: Principles and Finite Length Performance

    Get PDF
    In this paper, we give an overview of spatially coupled turbo codes (SC-TCs), the spatial coupling of parallel and serially concatenated convolutional codes, recently introduced by the authors. For presentation purposes, we focus on spatially coupled serially concatenated codes (SC-SCCs). We review the main principles of SC-TCs and discuss their exact density evolution (DE) analysis on the binary erasure channel. We also consider the construction of a family of rate-compatible SC-SCCs with simple 4-state component encoders. For all considered code rates, threshold saturation of the belief propagation (BP) to the maximum a posteriori threshold of the uncoupled ensemble is demonstrated, and it is shown that the BP threshold approaches the Shannon limit as the coupling memory increases. Finally we give some simulation results for finite lengths.Comment: Invited paper, IEEE Int. Symp. Wireless Communications Systems (ISWCS), Aug. 201

    Analysis and Design of Tuned Turbo Codes

    Get PDF
    It has been widely observed that there exists a fundamental trade-off between the minimum (Hamming) distance properties and the iterative decoding convergence behavior of turbo-like codes. While capacity achieving code ensembles typically are asymptotically bad in the sense that their minimum distance does not grow linearly with block length, and they therefore exhibit an error floor at moderate-to-high signal to noise ratios, asymptotically good codes usually converge further away from channel capacity. In this paper, we introduce the concept of tuned turbo codes, a family of asymptotically good hybrid concatenated code ensembles, where asymptotic minimum distance growth rates, convergence thresholds, and code rates can be traded-off using two tuning parameters, {\lambda} and {\mu}. By decreasing {\lambda}, the asymptotic minimum distance growth rate is reduced in exchange for improved iterative decoding convergence behavior, while increasing {\lambda} raises the asymptotic minimum distance growth rate at the expense of worse convergence behavior, and thus the code performance can be tuned to fit the desired application. By decreasing {\mu}, a similar tuning behavior can be achieved for higher rate code ensembles.Comment: Accepted for publication in IEEE Transactions on Information Theor
    • 

    corecore