1,425 research outputs found

    A study of energy efficiency opportunities in Putrajaya Maritime Centre towards green building

    Get PDF
    Nowadays, people are more concerned about energy efficiency, energy consumption and conservations in buildings. With this in view, a project to investigate the potential of energy saving in selected building in Putrajaya Maritime Centre was carried out. The scope of the study includes identifying energy consumption in a selected building, to study energy saving opportunities, and to analyse cost investment in term of economic. As a public building and a recreation centre, these building should take the initiative to protect the environment towards green building. According to the research and analysis, several solutions are proposed to help reduce energy consumption and energy cost in the Maritime Centre. First, by improving physical properties of building components. Second, by changing the air condition temperature control setting. This paper also discuss about the improvement of lighting system efficient. From the data analysis, it has been found that huge amount of energy can be saved for a better green environment

    Modular switched reluctance machines to be used in automotive applications

    Get PDF
    In the last decades industry, including also that of electrical machines and drives, was pushed near to its limits by the high market demands and fierce competition. As a response to the demanding challenges, improvements were made both in the design and manufacturing of electrical machines and drives. One of the introduced advanced technological solutions was the modular construction. This approach enables on a hand easier and higher productivity manufacturing, and on the other hand fast repairing in exploitation. Switched reluctance machines (SRMs) are very well fitted for modular construction, since the magnetic insulation of the phases is a basic design requirement. The paper is a survey of the main achievements in the field of modular electrical machines, (especially SRMs), setting the focus on the machines designed to be used in automotive applications

    On the Modeling, Analysis and Development of PMSM: For Traction and Charging Application

    Get PDF
    Permanent magnet synchronous machines (PMSMs) are widely implemented commercially available traction motors owing to their high torque production capability and wide operating speed range. However, to achieve significant electric vehicle (EV) global market infiltration in the coming years, the technological gaps in the technical targets of the traction motor must be addressed towards further improvement of driving range per charge of the vehicle and reduced motor weight and cost. Thus, this thesis focuses on the design and development of a novel high speed traction PMSM with improved torque density, maximized efficiency, reduced torque ripple and increased driving range suitable for both traction and integrated charging applications. First, the required performance targets are determined using a drive cycle based vehicle dynamic model, existing literature and roadmaps for future EVs. An unconventional fractional–slot distributed winding configuration with a coil pitch of 2 is selected for analysis due to their short end–winding length, reduced winding losses and improved torque density. For the chosen baseline topology, a non–dominated sorting genetic algorithm based selection of optimal odd slot numbers is performed for higher torque production and reduced torque ripple. Further, for the selected odd slot–pole combination, a novel star–delta winding configuration is modeled and analyzed using winding function theory for higher torque density, reduced spatial harmonics, reduced torque ripple and machine losses. Thereafter, to analyze the motor performance with control and making critical decisions on inter–dependent design parameter variations for machine optimization, a parametric design approach using a novel coupled magnetic equivalent circuit model and thermal model incorporating current harmonics for fractional–slot wound PMSMs was developed and verified. The developed magnetic circuit model incorporates all machine non–linearities including effects of temperature and induced inverter harmonics as well as the space harmonics in the winding inductances of a fractional–slot winding configuration. Using the proposed model with a pareto ant colony optimization algorithm, an optimal rotor design is obtained to reduce the magnet utilization and obtain maximized torque density and extended operating range. Further, the developed machine structure is also analyzed and verified for integrated charging operation where the machine’s winding inductances are used as line inductors for charging the battery thereby eliminating the requirement of an on–board charger in the powertrain and hence resulting in reduced weight, cost and extended driving range. Finally, a scaled–down prototype of the proposed PMSM is developed and validated with experimental results in terms of machine inductances, torque ripple, torque–power–speed curves and efficiency maps over the operating speed range. Subsequently, understanding the capabilities and challenges of the developed scaled–down prototype, a full–scale design with commercial traction level ratings, will be developed and analyzed using finite element analysis. Further recommendations for design improvement, future work and analysis will also be summarized towards the end of the dissertation

    Trends and Challenges in Electric Vehicle Motor Drivelines - A Review

    Get PDF
    Considering the need to optimize electric vehicle performance and the impact of efficient driveline configurations in achieving this, a brief study has been conducted. The drivelines of electric vehicles (EV) are critically examined in this survey. Also, promising motor topologies for usage in electric vehicles are presented. Additionally, the benefits and drawbacks of each kind of electric motor are examined from a system viewpoint. The majority of commercially available EV are powered by a permanent magnet motor or single induction type motors and a standard mechanical differential driveline. Considering these, a holistic review has been performed by including driveline configurations and different battery types. The authors suggest that motors be evaluated and contrasted using a standardized driving cycle

    Computationally Efficient Optimization of a Five-Phase Flux-Switching PM Machine Under Different Operating Conditions

    Get PDF
    This paper investigates the comparative design optimizations of a five-phase outer-rotor flux-switching permanent magnet (FSPM) machine for in-wheel traction applications. To improve the comprehensive performance of the motor, two kinds of large-scale design optimizations under different operating conditions are performed and compared, including the traditional optimization performed at the rated operating point and the optimization targeting the whole driving cycles. Three driving cycles are taken into account, namely, the urban dynamometer driving schedule (UDDS), the highway fuel economy driving schedule (HWFET), and the combined UDDS/HWFET, representing the city, highway, and combined city/highway driving, respectively. Meanwhile, the computationally efficient finite-element analysis (CE-FEA) method, the cyclic representative operating points extraction technique, as well as the response surface methodology (in order to minimize the number of experiments when establishing the inverse machine model), are presented to reduce the computational effort and cost. From the results and discussion, it will be found that the optimization results against different operating conditions exhibit distinct characteristics in terms of geometry, efficiency, and energy loss distributions. For the traditional optimization performed at the rated operating point, the optimal design tends to reduce copper losses but suffer from high core losses; for UDDS, the optimal design tends to minimize both copper losses and PM eddy-current losses in the low-speed region; for HWFET, the optimal design tends to minimize core losses in the high-speed region; for the combined UDDS/HWFET, the optimal design tends to balance/compromise the loss components in both the low-speed and high-speed regions. Furthermore, the advantages of the adopted optimization methodologies versus the traditional procedure are highlighted

    Traction motors for electric vehicles: Maximization of mechanical efficiency – A review

    Get PDF
    With the accelerating electrification revolution, new challenges and opportunities are yet emerging, despite range anxiety is still one of the biggest obstacles. Battery has been in the spotlight for resolving this problem, but other critical vehicle components such as traction motors are the key to efficient propulsion. Traction motor design involves a multidisciplinary approach, with still significant room for improvement in terms of efficiency. Therefore, this paper provides a comprehensive review of scientific literature looking at various aspects of traction motors to maximize mechanical efficiency for the application to high-performance Battery Electric Vehicles. At first, and overview on the mechanical design of electric motors is presented, focusing on topology selection, efficiency, transmission systems, and vehicle layouts; Special attention is then paid to the thermal management, as it is one of the main aspects that affects the global efficiency of such machines; thirdly, the paper presents a discussion on possible future trends to tackle ongoing challenges and to further enhance the performance of traction motors

    Comparison and Design Optimization of a Five-Phase Flux-Switching PM Machine for In-Wheel Traction Applications

    Get PDF
    A comparative study of five-phase outer-rotor flux-switching permanent magnet (FSPM) machines with different topologies for in-wheel traction applications is presented in this paper. Those topologies include double-layer winding, single-layer winding, C-core, and E-core configurations. The electromagnetic performance in the low-speed region, the flux-weakening capability in the high-speed region, and the fault-tolerance capability are all investigated in detail. The results indicate that the E-core FSPM machine has performance advantages. Furthermore, two kinds of E-core FSPM machines with different stator and rotor pole combinations are optimized, respectively. In order to reduce the computational burden during the large-scale optimization process, a mathematical technique is developed based on the concept of computationally efficient finite-element analysis. While a differential evolution algorithm serves as a global search engine to target optimized designs. Subsequently, multiobjective tradeoffs are presented based on a Pareto-set for 20 000 candidate designs. Finally, an optimal design is prototyped, and some experimental results are given to confirm the validity of the simulation results in this paper

    Pembangunan portal pendidikan teknik dan vokasional: satu kajian awal di kalangan Pelajar Sarjana PTV Jabatan Pendidikan Teknik dan Vokasional Fakulti Teknologi Kejuruteraan

    Get PDF
    Tujuan kajian ini adalah untuk mengkaji sejauh manakah keperJuan pelajar terhadap portal Pendidikan Teknik dan Vokasional (PTV). Sebuah portal PTV dibangunkan dalam kajian berasaskan produk ini. Sampel bagi kajian ini terdiri daripada pelajar sarjana pendidikan teknik dan vokasional, semester 3. Dapatan kajian ini dianalisis dengan menggunakan perisian SPSS versi 10. Pada peringkat awal projek ini, keperluan pelajar terhadap portal PTV dikenal pasti. Selepas itu, ciri-ciri yang perlu dibangunkan dalam portal PTV dikenal pasti dengan menggunakan kaedah borang soal selidik. Satu portal PTV dibangunkan berdasarkan dapatan kajian tersebut. Pada peringkat akhir projek ini, penilaian dilakukan ke atas portal PTV yang telah dibangunkan. Tujuan penilaian ini adalah untuk mengenal pasti sejauh manakah portal PTV ini memenuhi keperluan pelajar. Daripada dapatan kajian didapati portal PTV amat diperlukan oleh pelajar. Selain daripada itu, daripada dapatan kajian, portal PTV yang telah dibangunkan ini beryaya memenuhi keperluan pelajar. Cadangan untuk memperbaiki portal PTV yang telah dibangunkan ini diberi oleh responden. Kajian lanjutan patut dilakukan ke atas portal PTV yang telah dibangunkan bagi memperbaiki serta memumikan konsep reka bentuk dan pengurusan maklumat

    Optimal design of a three-phase AFPM for in-wheel electrical traction

    Get PDF
    Sinusoidally fed permanent magnet synchronous motors (PMSM) fulfill the special features required for traction motors to be applied in electric vehicles (EV). Among them, axial flux permanent magnet (AFPM) synchronous motors are especially suited for in-wheel applications. Electric motors used in such applications must meet two main requirements, i.e. high power density and fault tolerance. This paper deals with the optimal design of an AFPM for in-wheel applications used to drive an electrical scooter. The single-objective optimization process carried out in this paper is based on designing the AFPM to obtain an optimized power density while ensuring appropriate fault tolerance requirements. For this purpose a set of analytical equations are applied to obtain the geometrical, electric and mechanical parameters of the optimized AFPM and several design restrictions are applied to ensure fault tolerance capability. The optimization process is based on a genetic algorithm and two more constrained nonlinear optimization algorithms in which the objective function is the power density. Comparisons with available data found in the technical bibliography show the appropriateness of the approach developed in this work.Postprint (published version

    Optimisation de la Conception du Moteur Synchrone à Excitation Hybride pour Véhicules Électriques à Haut Performance

    Get PDF
    Since 1970, the ever-growing concerns of human community for the life-threatening environmental changes have pushed the policy makers to decarbonize those sectors with high energy demands, including the transportation industry. Optimal designs of Electric Vehicles (EVs) can contribute to today’s exigent car market, and take the leading role for future sustainable transportation of human and goods. At the heart of electromechanical energy conversion lays the electrical machines, which have attracted lots of interests and efforts for efficiency increase and cost reduction. In this thesis, a methodology is proposed and implemented to design and optimize the cost and efficiency of a Hybrid Excitation Synchronous Machine (HESM) for a given vehicle and a desired driving cycle. Hybridization in the excitation system can combine the favorable qualities of high-torque at low-speed with superior overloading capability, exceptional flux weakening and extended Constant Power Speed Range (CPSR), high efficiency, and flexible controllability in motoring and generation modes. With HESM technology, we can also shift from the rare-earth magnets towards the cheap ferrite magnets and guaranty the supply for motor industry. The designed HESM in this work responds to three requirements of the vehicle, namely, the maximum cruising speed, acceleration time, and gradeability, with the least or null overdesign in the drivetrain. At the same time, it will have the maximum global efficiency over the driving cycle, and the minimum cost for the material. The optimization is conducted at either of the component and system levels. The optimization at component-level is developed based on the Non-dominated Sorting Genetic Algorithm-II (NSGA-II). A new formulation for the objective functions is proposed, which deals with the design optimization and cost minimization, simultaneously. To maximize the efficiency, a system-level search is conducted to find the optimum HESM with the highest global efficiency over a given driving cycle. Due to the 3D direction of magnetic flux in the selected HESM topology, the Finite Element Analysis (FEA) was very time- and process-consuming. To be able to evaluate the objective functions during the optimization, a new model has been developed based on a 3D Magnetic Equivalent Circuit (MEC) network. This model predicts well the non-linearity of magnetic materials, as compared with the FEA simulations. At last, the final optimized HESM is evaluated by the virtue of FEA technique.Depuis 1970, les préoccupations de l’humanité envers les changements climatiques ont poussé les chercheurs à faire des études approfondies pour optimiser les machines électriques pour avoir des véhicules électriques plus performants et moins énergivores. La conception optimale de véhicules électriques (EV) peut contribuer pour un marché automobile plus exigeant et jouer un rôle principal pour le futur du transport durable des biens et des personnes. Les machines électriques se trouvent au cœur de la conversion d'énergie électromécanique, qui ont suscité beaucoup d'intérêts et d’efforts pour augmenter leur rendement et réduire leur coût. Cette thèse propose une méthodologie et une mise en œuvre pour minimiser le coût et maximiser l’efficacité d’une machine synchrone à excitation hybride (HESM) pour un véhicule donné et un cycle de conduite sélectionné. L'hybridation du système d’excitation peut combiner les qualités favorables comme un couple élevé à basse vitesse avec une capacité de surcharge supérieure, un défluxage exceptionnelle et une plage de vitesse prolongée de puissance constante (CPSR), une efficacité élevée et une contrôlabilité flexible dans les modes de traction et de freinage régénératif. Avec la technologie HESM, nous pouvons également passer des aimants de terres rares aux aimants en ferrite bon marché, et garantir l’approvisionnement pour l’industrie automobile. Le HESM conçu dans ce travail répond à trois exigences du véhicule : la vitesse de croisière maximale, le temps d’accélération et la capacité de monter une pente, avec un surdimensionnement minimal ou nulle de la chaîne de traction. Une optimisation multiniveau avec une interaction entre la vision composant et la vision système est proposée et validée. L’optimisation au niveau du composant est développée sur la base de l’algorithme génétique de tri non dominé (NSGA-II). Une nouvelle formulation pour les fonctions objectives est proposée pour l’optimisation simultanée de la conception de la machine et de la minimisation de son coût. Après avoir optimisés onze HESM au niveau du composant, pour maximiser l’efficacité, une optimisation au niveau du système est réalisée pour trouver le HESM optimal avec le plus haut rendement global sur le cycle de conduite donné. Une validation de la conception finale de la HESM présente un meilleur rendement global sur le cycle de conduite de 18,65% en relation à une machine synchrone à excitation séparée équivalente et 15,8% en relation à une à aiment permanent. En raison de la direction 3D du flux magnétique dans la topologie HESM sélectionnée, l’analyse par éléments finis (FEA) prenait beaucoup de temps et de ressources computationnelles. Afin d’évaluer les fonctions objectives lors de l’optimisation, un nouveau modèle a été développé basé sur un réseau de circuits magnétiques équivalents 3D (MEC). Ce modèle prédit bien la non-linéarité des matériaux magnétiques, par rapport aux simulations FEA. Enfin, le HESM optimisé final est évalué grâce à la technique FEA
    • …
    corecore