11,047 research outputs found

    Comparator Design in Sensors for Environmental Monitoring

    Get PDF
    This paper presents circuit design considerations of comparator in analog-to-digital converters (ADC) applied for a portable, low-cost and high performance nano-sensor chip which can be applied to detect the airborne magnetite pollution nano particulate matter (PM) for environmental monitoring. High-resolution ADC plays a vital important role in high perfor-mance nano-sensor, while high-resolution comparator is a key component in ADC. In this work, some important design issues related to comparators in analog-to-digital converters (ADCs) are discussed, simulation results show that the resolution of the comparator proposed can achieve 5µV , and it is appropriate for high-resolution application

    Design and evaluation of controls for drift, video gain, and color balance in spaceborne facsimile cameras

    Get PDF
    The facsimile camera is an optical-mechanical scanning device which has become an attractive candidate as an imaging system for planetary landers and rovers. This paper presents electronic techniques which permit the acquisition and reconstruction of high quality images with this device, even under varying lighting conditions. These techniques include a control for low frequency noise and drift, an automatic gain control, a pulse-duration light modulation scheme, and a relative spectral gain control. Taken together, these techniques allow the reconstruction of radiometrically accurate and properly balanced color images from facsimile camera video data. These techniques have been incorporated into a facsimile camera and reproduction system, and experimental results are presented for each technique and for the complete system

    A high performance hardware architecture for one bit transform based motion estimation

    Get PDF
    Motion Estimation (ME) is the most computationally intensive part of video compression and video enhancement systems. One bit transform (IBT) based ME algorithms have low computational complexity. Therefore, in this paper, we propose a high performance systolic hardware architecture for IBT based ME. The proposed hardware performs full search ME for 4 Macroblocks in parallel and it is the fastest IBT based ME hardware reported in the literature. In addition, it uses less on-chip memory than the previous IBT based ME hardware by using a novel data reuse scheme and memory organization. The proposed hardware is implemented in Verilog HDL. It consumes %34 of the slices in a Xilinx XC2VP30-7 FPGA. It works at 115 MHz in the same FPGA and is capable of processing 50 1920x1080 full High Definition frames per second. Therefore, it can be used in consumer electronics products that require real-time video processing or compression

    A fast lightstripe rangefinding system with smart VLSI sensor

    Get PDF
    The focus of the research is to build a compact, high performance lightstripe rangefinder using a Very Large Scale Integration (VLSI) smart photosensor array. Rangefinding, the measurement of the three-dimensional profile of an object or scene, is a critical component for many robotic applications, and therefore many techniques were developed. Of these, lightstripe rangefinding is one of the most widely used and reliable techniques available. Though practical, the speed of sampling range data by the conventional light stripe technique is severely limited. A conventional light stripe rangefinder operates in a step-and-repeat manner. A stripe source is projected on an object, a video image is acquired, range data is extracted from the image, the stripe is stepped, and the process repeats. Range acquisition is limited by the time needed to grab the video images, increasing linearly with the desired horizontal resolution. During the acquisition of a range image, the objects in the scene being scanned must be stationary. Thus, the long scene sampling time of step-and-repeat rangefinders limits their application. The fast range sensor proposed is based on the modification of this basic lightstripe ranging technique in a manner described by Sato and Kida. This technique does not require a sampling of images at various stripe positions to build a range map. Rather, an entire range image is acquired in parallel while the stripe source is swept continuously across the scene. Total time to acquire the range image data is independent of the range map resolution. The target rangefinding system will acquire 1,000 100 x 100 point range images per second with 0.5 percent range accuracy. It will be compact and rugged enough to be mounted on the end effector of a robot arm to aid in object manipulation and assembly tasks

    A study of high-speed AD and DA converters using redundancy techniques Interim report, May 10, 1963 - May 9, 1964

    Get PDF
    High speed analog-to-digital converters compared using redundancy encoding technique

    Study of optical techniques for the Ames unitary wind tunnels. Part 4: Model deformation

    Get PDF
    A survey of systems capable of model deformation measurements was conducted. The survey included stereo-cameras, scanners, and digitizers. Moire, holographic, and heterodyne interferometry techniques were also looked at. Stereo-cameras with passive or active targets are currently being deployed for model deformation measurements at NASA Ames and LaRC, Boeing, and ONERA. Scanners and digitizers are widely used in robotics, motion analysis, medicine, etc., and some of the scanner and digitizers can meet the model deformation requirements. Commercial stereo-cameras, scanners, and digitizers are being improved in accuracy, reliability, and ease of operation. A number of new systems are coming onto the market

    Extension of ERIM multispectral data processing capabilities through improved data handling techniques

    Get PDF
    The improvement and extension of the capabilities of the Environmental Research Institute of Michigan processing facility in handling multispectral data are discussed. Improvements consisted of implementing hardware modifications which permitted more rapid access to the recorded data through improved numbering and indexing of such data. In addition, techniques are discussed for handling data from sources other than the ERIM M-5 and M-7 scanner systems
    corecore