1,643 research outputs found

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Fault estimation and fault-tolerant control for discrete-time dynamic systems

    Get PDF
    In this paper, a novel discrete-time estimator is proposed, which is employed for simultaneous estimation of system states, and actuator/sensor faults in a discrete-time dynamic system. The existence of the discrete-time simultaneous estimator is proven mathematically. The systematic design procedure for the derivative and proportional observer gains is addressed, enabling the estimation error dynamics to be internally proper and stable, and robust against the effects from the process disturbances, measurement noise, and faults. Based on the estimated fault signals and system states, a discrete-time fault-tolerant design approach is addressed, by which the system may recover the system performance when actuator/sensor faults occur. Finally, the proposed integrated discrete-time fault estimation and fault-tolerant control technique is applied to the vehicle lateral dynamics, which demonstrates the effectiveness of the developed techniques

    Development of the PD/PI Extended State Observer to Detect Sensor and Actuator Faults Simultaneously

    Get PDF
    This paper discusses about an observer based faultdetection scheme to detect sensor and actuator faultssimultaneously in LTI system. The proposed strategy is to addderivative action on the extended state observer (ESO) in additionto proportional-integral action, so that the structure of theproposed observer is PD/PI or called PD/PI-ESO. The derivativeaction is performed both in state estimation and fault estimation.This is to achieve fast state estimation as well as fast faultestimation. Furthermore, the effects of disturbance are attenuatedby using the H performance approach. The observer gains arethen determined based on Linear Matrix Inequalities (LMI)technique. Simulation results of a DC motor speed control systemare presented to illustrate the effectiveness of the proposed method

    Observer based active fault tolerant control of descriptor systems

    Get PDF
    The active fault tolerant control (AFTC) uses the information provided by fault detection and fault diagnosis (FDD) or fault estimation (FE) systems offering an opportunity to improve the safety, reliability and survivability for complex modern systems. However, in the majority of the literature the roles of FDD/FE and reconfigurable control are described as separate design issues often using a standard state space (i.e. non-descriptor) system model approach. These separate FDD/FE and reconfigurable control designs may not achieve desired stability and robustness performance when combined within a closed-loop system.This work describes a new approach to the integration of FE and fault compensation as a form of AFTC within the context of a descriptor system rather than standard state space system. The proposed descriptor system approach has an integrated controller and observer design strategy offering better design flexibility compared with the equivalent approach using a standard state space system. An extended state observer (ESO) is developed to achieve state and fault estimation based on a joint linear matrix inequality (LMI) approach to pole-placement and H∞ optimization to minimize the effects of bounded exogenous disturbance and modelling uncertainty. A novel proportional derivative (PD)-ESO is introduced to achieve enhanced estimation performance, making use of the additional derivative gain. The proposed approaches are evaluated using a common numerical example adapted from the recent literature and the simulation results demonstrate clearly the feasibility and power of the integrated estimation and control AFTC strategy. The proposed AFTC design strategy is extended to an LPV descriptor system framework as a way of dealing with the robustness and stability of the system with bounded parameter variations arising from the non-linear system, where a numerical example demonstrates the feasibility of the use of the PD-ESO for FE and compensation integrated within the AFTC system.A non-linear offshore wind turbine benchmark system is studied as an application of the proposed design strategy. The proposed AFTC scheme uses the existing industry standard wind turbine generator angular speed reference control system as a “baseline” control within the AFTC scheme. The simulation results demonstrate the added value of the new AFTC system in terms of good fault tolerance properties, compared with the existing baseline system

    Actuator fault diagnosis of singular delayed LPV systems with inexact measured parameters via PI unknown input observer

    Get PDF
    © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksIn this study, actuator fault diagnosis of singular delayed linear parameter varying (SDLPV) systems is considered. The considered system has a time-varying state delay and its matrices are dependent on some parameters that are measurable online. It is assumed that the measured parameters are inexact due to the existence of noise in real situations. The system with inexact measured parameters is converted to an uncertain system. Actuator fault diagnosis is carried out based on fault size estimation. For this purpose, the system is transformed to a polytopic representation and then a polytopic proportional integral unknown input observer (PI-UIO) is designed. The proposed observer provides simultaneous state and actuator fault estimation while attenuating, in the H8H8 sense, the effects of input disturbance, output noise and the uncertainty caused by inexact measured parameters. The design procedure of PI-UIO is formulated as a convex optimisation problem with a set of Linear Matrix Inequality (LMI) constraints in the vertices of the parameter domain, guaranteeing robust exponential convergence of the PI-UIO. The efficiency of the proposed method is illustrated with an electrical circuit example modelled as an SDLPV system.Peer ReviewedPostprint (author's final draft

    Robust PI-D controller design for descriptor systems using regional pole placement and/or H2H_2 performance

    Get PDF
    summary:The paper deals with the problem of obtaining a robust PI-D controller design procedure for linear time invariant descriptor uncertain polytopic systems using the regional pole placement and/or H2H_2 criterion approach in the form of a quadratic cost function with the state, derivative state and plant input (QSR). In the frame of Lyapunov Linear Matrix Inequality (LMI) regional pole placement approach and/or H2H_2 quadratic cost function based on Bellman-Lyapunov equation, the designed novel design procedure guarantees the robust properties of closed-loop system with parameter dependent quadratic stability/quadratic stability. In the obtained design procedure the designer could use controller with different structures such as P, PI, PID, PI-D. For the PI-D's D-part of controller feedback the designer could choose any available output/state derivative variables of descriptor systems. Obtained design procedure is in the form of Bilinear Matrix Inequality (BMI). The effectiveness of the obtained results is demonstrated on two examples

    Fault detection on bearings coupled to permanent magnet DC motors by using a generalized Takagi-Sugeno PI observer

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThis paper presents a fault detection system for rotative machinery. A permanent-magnet DC motor is used as case of study. The main idea is to estimate on-line the non-load torque (To) in order to monitor the bearing health condition. The fault detection system is based on the design of a generalized Takagi-Sugeno PI (proportional-integral) observer. The main advantage of this approach is that it can be easily implemented because the observer gains are obtained by solving a set of LMIs (linear matrix inequalities). Moreover, the method can be extended to more complicated nonlinear systems by using the Takagi-Sugeno approach. A simulation is performed to show that this fault detection scheme can be applied to detect abrupt faults on rotative machinery which can lead the system to undesirable performance caused by vibrations or breakdown.Accepted versio
    • 

    corecore