5,437 research outputs found

    CMOS design of adaptive fuzzy ASICs using mixed-signal circuits

    Get PDF
    Analog circuits are natural candidates to design fuzzy chips with optimum speed/power figures for precision up to about 1%. This paper presents a methodology and circuit blocks to realize fuzzy controllers in the form of analog CMOS chips. These chips can be made to adapt their function through electrical control. The proposed design methodology emphasizes modularity and simplicity at the circuit level - prerequisites to increasing processor complexity and operation speed. The paper include measurements from a silicon prototype of a fuzzy controller chip in CMOS 1.5 /spl mu/m single-poly technology

    Modular Design of Adaptive Analog CMOS Fuzzy Controller Chips

    Get PDF
    Analog circuits are natural candidates to design fuzzy chips with optimum speed/power figures for precision up to about 1%. This paper presents a methodology and circuit blocks to realize fuzzy controllers in the form of analog CMOS chips. These chips can be made to adapt their function through electrical control. The proposed design methodology emphasizes modularity and simplicity at the circuit level -- prerequisites to increasing processor complexity and operation speed. The paper include measurements from a silicon prototype of a fuzzy controller chip in CMOS 1.5ÎŒm single-poly technology

    Identification of Evolving Rule-based Models.

    Get PDF
    An approach to identification of evolving fuzzy rule-based (eR) models is proposed. eR models implement a method for the noniterative update of both the rule-base structure and parameters by incremental unsupervised learning. The rule-base evolves by adding more informative rules than those that previously formed the model. In addition, existing rules can be replaced with new rules based on ranking using the informative potential of the data. In this way, the rule-base structure is inherited and updated when new informative data become available, rather than being completely retrained. The adaptive nature of these evolving rule-based models, in combination with the highly transparent and compact form of fuzzy rules, makes them a promising candidate for modeling and control of complex processes, competitive to neural networks. The approach has been tested on a benchmark problem and on an air-conditioning component modeling application using data from an installation serving a real building. The results illustrate the viability and efficiency of the approach. (c) IEEE Transactions on Fuzzy System

    Urban and extra-urban hybrid vehicles: a technological review

    Get PDF
    Pollution derived from transportation systems is a worldwide, timelier issue than ever. The abatement actions of harmful substances in the air are on the agenda and they are necessary today to safeguard our welfare and that of the planet. Environmental pollution in large cities is approximately 20% due to the transportation system. In addition, private traffic contributes greatly to city pollution. Further, “vehicle operating life” is most often exceeded and vehicle emissions do not comply with European antipollution standards. It becomes mandatory to find a solution that respects the environment and, realize an appropriate transportation service to the customers. New technologies related to hybrid –electric engines are making great strides in reducing emissions, and the funds allocated by public authorities should be addressed. In addition, the use (implementation) of new technologies is also convenient from an economic point of view. In fact, by implementing the use of hybrid vehicles, fuel consumption can be reduced. The different hybrid configurations presented refer to such a series architecture, developed by the researchers and Research and Development groups. Regarding energy flows, different strategy logic or vehicle management units have been illustrated. Various configurations and vehicles were studied by simulating different driving cycles, both European approval and homologation and customer ones (typically municipal and university). The simulations have provided guidance on the optimal proposed configuration and information on the component to be used

    DYNAMIC BEHAVIOUR OF A MODELED TRANSPORTATION NETWORKED CONTROL SYSTEM FOR T-JUNCTION

    Get PDF
    Traffic congestion has been the major problem on most Nigeria roads. This is particularly due to the rapid increase in urban migration. Majority of the traffic control schemes adopted in the country to alleviate this problem are the fixed time controllers employed at all signalized intersections. This has resulted in increased traffic jam especially during the peak periods at most intersections on our highways. In this study, a fuzzy logic system to control traffic on signalized intersection has been proposed. The Fuzzy Logic Controller regulates the traffic signal timing, the green light extension and phase sequence to ensure smooth flow of traffic, thereby reducing traffic delays and thus increasing the intersection capacity. A fuzzy logic traffic control simulation model was developed and tested using MATLAB/ SIMULINK software. Comparative analysis was carried out between the fuzzy logic controller and a conventional fixed-time controller in order to determine the efficiency of the developed system. Evaluation results of the fuzzy logic traffic controller shows that vehicles spent less time at the intersection compared to the fixed time controller, that is, improved vehicular movement. Moreover, simulation results show that the fuzzy logic controller has better efficiency and that a huge improvement could be realized by adapting it in controlling traffic flow at intersections. &nbsp

    To develop an efficient variable speed compressor motor system

    Get PDF
    This research presents a proposed new method of improving the energy efficiency of a Variable Speed Drive (VSD) for induction motors. The principles of VSD are reviewed with emphasis on the efficiency and power losses associated with the operation of the variable speed compressor motor drive, particularly at low speed operation.The efficiency of induction motor when operated at rated speed and load torque is high. However at low load operation, application of the induction motor at rated flux will cause the iron losses to increase excessively, hence its efficiency will reduce dramatically. To improve this efficiency, it is essential to obtain the flux level that minimizes the total motor losses. This technique is known as an efficiency or energy optimization control method. In practice, typical of the compressor load does not require high dynamic response, therefore improvement of the efficiency optimization control that is proposed in this research is based on scalar control model.In this research, development of a new neural network controller for efficiency optimization control is proposed. The controller is designed to generate both voltage and frequency reference signals imultaneously. To achieve a robust controller from variation of motor parameters, a real-time or on-line learning algorithm based on a second order optimization Levenberg-Marquardt is employed. The simulation of the proposed controller for variable speed compressor is presented. The results obtained clearly show that the efficiency at low speed is significant increased. Besides that the speed of the motor can be maintained. Furthermore, the controller is also robust to the motor parameters variation. The simulation results are also verified by experiment

    Type-2 fuzzy logic system applications for power systems

    Get PDF
    PhD ThesisIn the move towards ubiquitous information & communications technology, an opportunity for further optimisation of the power system as a whole has arisen. Nonetheless, the fast growth of intermittent generation concurrently with markets deregulation is driving a need for timely algorithms that can derive value from these new data sources. Type-2 fuzzy logic systems can offer approximate solutions to these computationally hard tasks by expressing non-linear relationships in a more flexible fashion. This thesis explores how type-2 fuzzy logic systems can provide solutions to two of these challenging power system problems; short-term load forecasting and voltage control in distribution networks. On one hand, time-series forecasting is a key input for economic secure power systems as there are many tasks that require a precise determination of the future short-term load (e.g. unit commitment or security assessment among others), but also when dealing with electricity as commodity. As a consequence, short-term load forecasting becomes essential for energy stakeholders and any inaccuracy can be directly translated into their financial performance. All these is reflected in current power systems literature trends where a significant number of papers cover the subject. Extending the existing literature, this work focuses in how these should be implemented from beginning to end to bring to light their predictive performance. Following this research direction, this thesis introduces a novel framework to automatically design type-2 fuzzy logic systems. On the other hand, the low-carbon economy is pushing the grid status even closer to its operational limits. Distribution networks are becoming active systems with power flows and voltages defined not only by load, but also by generation. As consequence, even if it is not yet absolutely clear how power systems will evolve in the long-term, all plausible future scenarios claim for real-time algorithms that can provide near optimal solutions to this challenging mixed-integer non-linear problem. Aligned with research and industry efforts, this thesis introduces a scalable implementation to tackle this task in divide-and-conquer fashio

    An Optimized Hybrid Fuzzy-Fuzzy Controller for PWM-driven Variable Speed Drives

    Get PDF
    This paper discusses the performance and the impact of disturbances onto a proposed hybrid fuzzy-fuzzy controller (HFFC) system to attain speed control of a variable speed induction motor (IM) drive. Notably, to design a scalar controller, the two features of field-oriented control (FOC), i.e., the frequency and current, are employed. Specifically, the features of fuzzy frequency and fuzzy current amplitude controls are exploited for the control of an induction motor in a closed-loop current amplitude input model; hence, with the combination of both controllers to form a hybrid controller. With respect to finding the rule base of a fuzzy controller, a genetic algorithm is employed to resolve the problem of an optimization that diminishes an objective function, i.e., the Integrated Absolute Error (IAE) criterion. Furthermore, the principle of HFFC, for the purpose of overcoming the shortcoming of the FOC technique is established during the acceleration-deceleration stages to regulate the speed of the rotor using the fuzzy frequency controller. On the other hand, during the steady-state stage, the fuzzy stator current magnitude controller is engaged. A simulation is conducted via MATLAB/Simulink to observe the performance of the controller. Thus, from a series of simulations and experimental tests, the controller shows to perform consistently well and possesses insensitive behavior towards the parameter deviations in the system, as well as robust to load and noise disturbances
    • 

    corecore