2,212 research outputs found

    Propulsion simulation for magnetically suspended wind tunnel models

    Get PDF
    The feasibility of simulating propulsion-induced aerodynamic effects on scaled aircraft models in wind tunnels employing Magnetic Suspension and Balance Systems. The investigation concerned itself with techniques of generating exhaust jets of appropriate characteristics. The objectives were to: (1) define thrust and mass flow requirements of jets; (2) evaluate techniques for generating propulsive gas within volume limitations imposed by magnetically-suspended models; (3) conduct simple diagnostic experiments for techniques involving new concepts; and (4) recommend experiments for demonstration of propulsion simulation techniques. Various techniques of generating exhaust jets of appropriate characteristics were evaluated on scaled aircraft models in wind tunnels with MSBS. Four concepts of remotely-operated propulsion simulators were examined. Three conceptual designs involving innovative adaptation of convenient technologies (compressed gas cylinders, liquid, and solid propellants) were developed. The fourth innovative concept, namely, the laser-assisted thruster, which can potentially simulate both inlet and exhaust flows, was found to require very high power levels for small thrust levels

    The NASA Evolutionary Xenon Thruster (NEXT): NASA's Next Step for U.S. Deep Space Propulsion

    Get PDF
    NASA s Evolutionary Xenon Thruster (NEXT) project is developing next generation ion propulsion technologies to enhance the performance and lower the costs of future NASA space science missions. This is being accomplished by producing Engineering Model (EM) and Prototype Model (PM) components, validating these via qualification-level and integrated system testing, and preparing the transition of NEXT technologies to flight system development. The project is currently completing one of the final milestones of the effort, that is operation of an integrated NEXT Ion Propulsion System (IPS) in a simulated space environment. This test will advance the NEXT system to a NASA Technology Readiness Level (TRL) of 6 (i.e., operation of a prototypical system in a representative environment), and will confirm its readiness for flight. Besides its promise for upcoming NASA science missions, NEXT may have excellent potential for future commercial and international spacecraft applications

    Laboratory Experimentation of Guidance and Control of Spacecraft During On-Orbit Proximity Maneuvers

    Get PDF
    The article of record is available from http://www.intechopen.com/books/mechatronic-systems-simulation-modeling-and-control/laboratoryexperimentation-of-guidance-and-control-of-spacecraft-during-on-orbit-proximity-maneuversThe traditional spacecraft system is a monolithic structure with a single mission focused design and lengthy production and qualification schedules coupled with enormous cost. Additionally, there rarely, if ever, is any designed preventive maintenance plan or re-fueling capability. There has been much research in recent years into alternative options. One alternative option involves autonomous on-orbit servicing of current or future monolithic spacecraft systems. The U.S. Department of Defense (DoD) embarked on a highly successful venture to prove out such a concept with the Defense Advanced Research Projects Agency’s (DARPA’s) Orbital Express program. Orbital Express demonstrated all of the enabling technologies required for autonomous on-orbit servicing to include refueling, component transfer, autonomous satellite grappling and berthing, rendezvous, inspection, proximity operations, docking and undocking, and autonomous fault recognition and anomaly handling (Kennedy, 2008). Another potential option involves a paradigm shift from the monolithic spacecraft system to one involving multiple interacting spacecraft that can autonomously assemble and reconfigure. Numerous benefits are associated with autonomous spacecraft assemblies, ranging from a removal of significant intra-modular reliance that provides for parallel design, fabrication, assembly and validation processes to the inherent smaller nature of fractionated systems which allows for each module to be placed into orbit separately on more affordable launch platforms (Mathieu, 2005)

    NASA Propulsion Investments for Exploration and Science

    Get PDF
    The National Aeronautics and Space Administration (NASA) invests in chemical and electric propulsion systems to achieve future mission objectives for both human exploration and robotic science. Propulsion system requirements for human missions are derived from the exploration architecture being implemented in the Constellation Program. The Constellation Program first develops a system consisting of the Ares I launch vehicle and Orion spacecraft to access the Space Station, then builds on this initial system with the heavy-lift Ares V launch vehicle, Earth departure stage, and lunar module to enable missions to the lunar surface. A variety of chemical engines for all mission phases including primary propulsion, reaction control, abort, lunar ascent, and lunar descent are under development or are in early risk reduction to meet the specific requirements of the Ares I and V launch vehicles, Orion crew and service modules, and Altair lunar module. Exploration propulsion systems draw from Apollo, space shuttle, and commercial heritage and are applied across the Constellation architecture vehicles. Selection of these launch systems and engines is driven by numerous factors including development cost, existing infrastructure, operations cost, and reliability. Incorporation of green systems for sustained operations and extensibility into future systems is an additional consideration for system design. Science missions will directly benefit from the development of Constellation launch systems, and are making advancements in electric and chemical propulsion systems for challenging deep space, rendezvous, and sample return missions. Both Hall effect and ion electric propulsion systems are in development or qualification to address the range of NASA s Heliophysics, Planetary Science, and Astrophysics mission requirements. These address the spectrum of potential requirements from cost-capped missions to enabling challenging high delta-v, long-life missions. Additionally, a high specific impulse chemical engine is in development that will add additional capability to performance-demanding space science missions. In summary, the paper provides a survey of current NASA development and risk reduction propulsion investments for exploration and science

    A NASA high-power space-based laser research and applications program

    Get PDF
    Applications of high power lasers are discussed which might fulfill the needs of NASA missions, and the technology characteristics of laser research programs are outlined. The status of the NASA programs or lasers, laser receivers, and laser propulsion is discussed, and recommendations are presented for a proposed expanded NASA program in these areas. Program elements that are critical are discussed in detail

    Propulsion simulator for magnetically-suspended wind tunnel models

    Get PDF
    In order to demonstrate the measurement of aerodynamic forces/moments, including the effects of exhaust jets in Magnetic Suspension and Balance System (MSBS) wind tunnels, two propulsion simulator models were developed at Physical Sciences Inc. (PSI). Both the small-scale model (1 in. diameter X 8 in. long) and the large-scale model (2.5 in. diameter X 15 in. long) employed compressed, liquefied carbon dioxide as a propellant. The small-scale simulator, made from a highly magnetizable iron alloy, was demonstrated in the 7 in. MSBS wind tunnel at the University of Southampton. It developed a maximum thrust of approximate 1.3 lbf with a 0.098 in. diameter nozzle and 0.7 lbf with a 0.295 in. diameter nozzle. The Southampton MSBS was able to control the simulator at angles-of attack up to 20 deg. The large-scale simulator was demonstrated to operate in both a steady-state and a pulse mode via a miniaturized solinoid valve. It developed a stable and repeatable thrust of 2.75 lbf over a period of 4s and a nozzle pressure ratio (NPR) of 5

    Enhancing space transportation: The NASA program to develop electric propulsion

    Get PDF
    The NASA Office of Aeronautics, Exploration, and Technology (OAET) supports a research and technology (R and T) program in electric propulsion to provide the basis for increased performance and life of electric thruster systems which can have a major impact on space system performance, including orbital transfer, stationkeeping, and planetary exploration. The program is oriented toward providing high-performance options that will be applicable to a broad range of near-term and far-term missions and vehicles. The program, which is being conducted through the Jet Propulsion Laboratory (JPL) and Lewis Research Center (LeRC) includes research on resistojet, arcjets, ion engines, magnetoplasmadynamic (MPD) thrusters, and electrodeless thrusters. Planning is also under way for nuclear electric propulsion (NEP) as part of the Space Exploration Initiative (SEI)

    SIMPEL: Circuit model for photonic spike processing laser neurons

    Get PDF
    We propose an equivalent circuit model for photonic spike processing laser neurons with an embedded saturable absorber---a simulation model for photonic excitable lasers (SIMPEL). We show that by mapping the laser neuron rate equations into a circuit model, SPICE analysis can be used as an efficient and accurate engine for numerical calculations, capable of generalization to a variety of different laser neuron types found in literature. The development of this model parallels the Hodgkin--Huxley model of neuron biophysics, a circuit framework which brought efficiency, modularity, and generalizability to the study of neural dynamics. We employ the model to study various signal-processing effects such as excitability with excitatory and inhibitory pulses, binary all-or-nothing response, and bistable dynamics.Comment: 16 pages, 7 figure

    Handgrip pattern recognition

    Get PDF
    There are numerous tragic gun deaths each year. Making handguns safer by personalizing them could prevent most such tragedies. Personalized handguns, also called smart guns, are handguns that can only be fired by the authorized user. Handgrip pattern recognition holds great promise in the development of the smart gun. Two algorithms, static analysis algorithm and dynamic analysis algorithm, were developed to find the patterns of a person about how to grasp a handgun. The static analysis algorithm measured 160 subjects\u27 fingertip placements on the replica gun handle. The cluster analysis and discriminant analysis were applied to these fingertip placements, and a classification tree was built to find the fingertip pattern for each subject. The dynamic analysis algorithm collected and measured 24 subjects\u27 handgrip pressure waveforms during the trigger pulling stage. A handgrip recognition algorithm was developed to find the correct pattern. A DSP box was built to make the handgrip pattern recognition to be done in real time. A real gun was used to evaluate the handgrip recognition algorithm. The result was shown and it proves that such a handgrip recognition system works well as a prototype
    • …
    corecore