11 research outputs found

    Design of Finite-Length Irregular Protograph Codes with Low Error Floors over the Binary-Input AWGN Channel Using Cyclic Liftings

    Full text link
    We propose a technique to design finite-length irregular low-density parity-check (LDPC) codes over the binary-input additive white Gaussian noise (AWGN) channel with good performance in both the waterfall and the error floor region. The design process starts from a protograph which embodies a desirable degree distribution. This protograph is then lifted cyclically to a certain block length of interest. The lift is designed carefully to satisfy a certain approximate cycle extrinsic message degree (ACE) spectrum. The target ACE spectrum is one with extremal properties, implying a good error floor performance for the designed code. The proposed construction results in quasi-cyclic codes which are attractive in practice due to simple encoder and decoder implementation. Simulation results are provided to demonstrate the effectiveness of the proposed construction in comparison with similar existing constructions.Comment: Submitted to IEEE Trans. Communication

    Design of Non-Binary Quasi-Cyclic LDPC Codes by ACE Optimization

    Full text link
    An algorithm for constructing Tanner graphs of non-binary irregular quasi-cyclic LDPC codes is introduced. It employs a new method for selection of edge labels allowing control over the code's non-binary ACE spectrum and resulting in low error-floor. The efficiency of the algorithm is demonstrated by generating good codes of short to moderate length over small fields, outperforming codes generated by the known methods.Comment: Accepted to 2013 IEEE Information Theory Worksho

    Lowering the Error Floor of LDPC Codes Using Cyclic Liftings

    Full text link
    Cyclic liftings are proposed to lower the error floor of low-density parity-check (LDPC) codes. The liftings are designed to eliminate dominant trapping sets of the base code by removing the short cycles which form the trapping sets. We derive a necessary and sufficient condition for the cyclic permutations assigned to the edges of a cycle cc of length (c)\ell(c) in the base graph such that the inverse image of cc in the lifted graph consists of only cycles of length strictly larger than (c)\ell(c). The proposed method is universal in the sense that it can be applied to any LDPC code over any channel and for any iterative decoding algorithm. It also preserves important properties of the base code such as degree distributions, encoder and decoder structure, and in some cases, the code rate. The proposed method is applied to both structured and random codes over the binary symmetric channel (BSC). The error floor improves consistently by increasing the lifting degree, and the results show significant improvements in the error floor compared to the base code, a random code of the same degree distribution and block length, and a random lifting of the same degree. Similar improvements are also observed when the codes designed for the BSC are applied to the additive white Gaussian noise (AWGN) channel

    Ultra-Sparse Non-Binary LDPC Codes for Probabilistic Amplitude Shaping

    Full text link
    This work shows how non-binary low-density parity-check codes over GF(2p2^p) can be combined with probabilistic amplitude shaping (PAS) (B\"ocherer, et al., 2015), which combines forward-error correction with non-uniform signaling for power-efficient communication. Ultra-sparse low-density parity-check codes over GF(64) and GF(256) gain 0.6 dB in power efficiency over state-of-the-art binary LDPC codes at a spectral efficiency of 1.5 bits per channel use and a blocklength of 576 bits. The simulation results are compared to finite length coding bounds and complemented by density evolution analysis.Comment: Accepted for Globecom 201

    An Efficient Algorithm for Finding Dominant Trapping Sets of LDPC Codes

    Full text link
    This paper presents an efficient algorithm for finding the dominant trapping sets of a low-density parity-check (LDPC) code. The algorithm can be used to estimate the error floor of LDPC codes or to be part of the apparatus to design LDPC codes with low error floors. For regular codes, the algorithm is initiated with a set of short cycles as the input. For irregular codes, in addition to short cycles, variable nodes with low degree and cycles with low approximate cycle extrinsic message degree (ACE) are also used as the initial inputs. The initial inputs are then expanded recursively to dominant trapping sets of increasing size. At the core of the algorithm lies the analysis of the graphical structure of dominant trapping sets and the relationship of such structures to short cycles, low-degree variable nodes and cycles with low ACE. The algorithm is universal in the sense that it can be used for an arbitrary graph and that it can be tailored to find other graphical objects, such as absorbing sets and Zyablov-Pinsker (ZP) trapping sets, known to dominate the performance of LDPC codes in the error floor region over different channels and for different iterative decoding algorithms. Simulation results on several LDPC codes demonstrate the accuracy and efficiency of the proposed algorithm. In particular, the algorithm is significantly faster than the existing search algorithms for dominant trapping sets

    비신뢰 경로 검색 기법을 이용한 저밀도 패리티 체크 부호를 위한 저복잡도 복호 기법 연구

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 공과대학 전기·컴퓨터공학부, 2017. 8. 노종선.This dissertation contains the following contributions on the low-complexity decoding schemes of LDPC codes. Two-stage decoding scheme for LDPC codes – A new stopping criterion for LDPC codes – A new decoding scheme for LDPC codes with unreliable path search Parallel unreliable path search algorithm Analysis of two-stage decoding schemes – Validity and complexity analysis First, a new two-stage decoding scheme for low-density parity check (LDPC) codes to lower the error-floor is proposed. The proposed decoding scheme consists of the conventional belief propagation (BP) decoding algorithm as the first-stage decoding and the re-decodings with manipulated log-likelihood ratios (LLRs) of variable nodes as the second-stage decoding. In the first-stage decoding, an early stopping criterion is proposed for early detection of decoding failure and the candidate set of the variable nodes is determined, which can be partly included in the small trapping sets. In the second-stage decoding, the scores of the variable nodes in the candidate set are computed by the proposed unreliable path search algorithm and the variable nodes are sorted in ascending order by their scores for the re-decoding trials. Each re-decoding trial is performed by BP decoding algorithm with manipulated LLR of a selected variable node in the candidate set one at a time with the second early stopping criterion. Secondly, the parallel unreliable path search algorithm is proposed for practical application to the proposed unreliable path search algorithm. In order to reduce the decoding delay and computational complexity, an efficient method for the search algorithm based on the parallel message-passing algorithm in the LDPC decoding is proposed. The parallel unreliable path search algorithm significantly reduces the additional complexity without extra hardware requirements. Finally, the validity and the complexity analysis of the proposed unreliable path search algorithm is presented. The proposed algorithm effectively finds the variable nodes in small trapping sets much more faster than the previous random selection method. Also, it is verified that the additional complexity of the parallel unreliable path search algorithm is less than that of one iteration of iterative decoders.Abstract i Contents iii List of Tables v List of Figures vi 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Overview of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Overview of LDPC Codes 9 2.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Decoding of LDPC Codes . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Analysis of LDPC Codes . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.1 Density Evolution . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.2 Mean Evolution . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4 Quasi-Cyclic LDPC Codes . . . . . . . . . . . . . . . . . . . . . . . 19 2.5 Error-Floor and Trapping Sets . . . . . . . . . . . . . . . . . . . . . 21 3 A New Two-Stage Decoding Scheme with Unreliable Path Search 23 3.1 Overview of The Proposed Two-Stage Decoding Scheme . . . . . . . 26 3.2 First-Stage Decoding with the First Early Stopping Criterion . . . . . 27 3.3 Second-Stage Decoding with Unreliable Path Search Algorithm . . . 36 3.3.1 Scoring by Unreliable Path Search Algorithm . . . . . . . . . 37 3.3.2 LLR Manipulation and Re-decoding with the Second Early Stopping Criterion . . . . . . . . . . . . . . . . . . . . . . . 42 4 Parallel Unreliable Path Search Algorithm 44 4.1 Description of Parallel Unreliable Path Search Algorithm . . . . . . . 44 4.2 Scoring by Parallel Unreliable Path Search Algorithm . . . . . . . . . 48 5 Analysis of the Unreliable Path Search Algorithm 51 5.1 Validity of the Unreliable Path Search Algorithm . . . . . . . . . . . 51 5.2 Complexity Analysis of the Unreliable Path Search Algorithm . . . . 56 6 Simulation Results 59 7 Conclusions 65 Abstract (In Korean) 73Docto

    Conception Avancée des codes LDPC binaires pour des applications pratiques

    Get PDF
    The design of binary LDPC codes with low error floors is still a significant problem not fully resolved in the literature. This thesis aims to design optimal/optimized binary LDPC codes. We have two main contributions to build the LDPC codes with low error floors. Our first contribution is an algorithm that enables the design of optimal QC-LDPC codes with maximum girth and mini-mum sizes. We show by simulations that our algorithm reaches the minimum bounds for regular QC-LDPC codes (3, d c ) with low d c . Our second contribution is an algorithm that allows the design optimized of regular LDPC codes by minimizing dominant trapping-sets/expansion-sets. This minimization is performed by a predictive detection of dominant trapping-sets/expansion-sets defined for a regular code C(d v , d c ) of girth g t . By simulations on different rate codes, we show that the codes designed by minimizing dominant trapping-sets/expansion-sets have better performance than the designed codes without taking account of trapping-sets/expansion-sets. The algorithms we proposed are based on the generalized RandPEG. These algorithms take into account non-cycles seen in the case of quasi-cyclic codes to ensure the predictions.La conception de codes LDPC binaires avec un faible plancher d’erreurs est encore un problème considérable non entièrement résolu dans la littérature. Cette thèse a pour objectif la conception optimale/optimisée de codes LDPC binaires. Nous avons deux contributions principales pour la construction de codes LDPC à faible plancher d’erreurs. Notre première contribution est un algorithme qui permet de concevoir des codes QC-LDPC optimaux à large girth avec les tailles minimales. Nous montrons par des simulations que notre algorithme atteint les bornes minimales fixées pour les codes QC-LDPC réguliers (3, d c ) avec d c faible. Notre deuxième contribution est un algorithme qui permet la conception optimisée des codes LDPC réguliers en minimisant les trapping-sets/expansion-sets dominants(es). Cette minimisation s’effectue par une détection prédictive des trapping-sets/expansion-sets dominants(es) définies pour un code régulier C(d v , d c ) de girth gt . Par simulations sur des codes de rendement différent, nous montrons que les codes conçus en minimisant les trapping-sets/expansion-sets dominants(es) ont de meilleures performances que les codes conçus sans la prise en compte des trapping-sets/expansion-sets. Les algorithmes que nous avons proposés se basent sur le RandPEG généralisé. Ces algorithmes prennent en compte les cycles non-vus dans le cas des codes quasi-cycliques pour garantir les prédictions
    corecore