2,370 research outputs found

    Design of Discrete Constellations for Peak-Power-Limited complex Gaussian Channels

    Get PDF
    Proceeding of: IEEE International Symposium on Information Theory (ISIT 2018)The capacity-achieving input distribution of the complex Gaussian channel with both average- and peak-power constraint is known to have a discrete amplitude and a continuous, uniformly-distributed, phase. Practical considerations, however, render the continuous phase inapplicable. This work studies the backoff from capacity induced by discretizing the phase of the input signal. A sufficient condition on the total number of quantization points that guarantees an arbitrarily small backoff is derived, and constellations that attain this guaranteed performance are proposed.The work of W. Huleihel was supported by the MIT - Technion Postdoctoral Fellowship. The work of Z. Goldfeld was supported by the Rothchild postdoctoral fellowship. The work of T. Koch has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 714161), from the Spanish Ministerio de Economíıa y Competitividad under Grants TEC2013-41718-R, RYC-2014-16332, and TEC2016-78434-C3-3-R (AEI/FEDER, EU), and from the Comunidad de Madrid under Grant S2103/ICE-2845. The work of M. Mokshay was supported by NSF grant #1409504

    Capacity and Modulations with Peak Power Constraint

    Full text link
    A practical communication channel often suffers from constraints on input other than the average power, such as the peak power constraint. In order to compare achievable rates with different constellations as well as the channel capacity under such constraints, it is crucial to take these constraints into consideration properly. In this paper, we propose a direct approach to compare the achievable rates of practical input constellations and the capacity under such constraints. As an example, we study the discrete-time complex-valued additive white Gaussian noise (AWGN) channel and compare the capacity under the peak power constraint with the achievable rates of phase shift keying (PSK) and quadrature amplitude modulation (QAM) input constellations.Comment: 9 pages with 12 figures. Preparing for submissio

    Uplink Non-Orthogonal Multiple Access with Finite-Alphabet Inputs

    Full text link
    This paper focuses on the non-orthogonal multiple access (NOMA) design for a classical two-user multiple access channel (MAC) with finite-alphabet inputs. We consider practical quadrature amplitude modulation (QAM) constellations at both transmitters, the sizes of which are assumed to be not necessarily identical. We propose to maximize the minimum Euclidean distance of the received sum-constellation with a maximum likelihood (ML) detector by adjusting the scaling factors (i.e., instantaneous transmitted powers and phases) of both users. The formulated problem is a mixed continuous-discrete optimization problem, which is nontrivial to resolve in general. By carefully observing the structure of the objective function, we discover that Farey sequence can be applied to tackle the formulated problem. However, the existing Farey sequence is not applicable when the constellation sizes of the two users are not the same. Motivated by this, we define a new type of Farey sequence, termed punched Farey sequence. Based on this, we manage to achieve a closed-form optimal solution to the original problem by first dividing the entire feasible region into a finite number of Farey intervals and then taking the maximum over all the possible intervals. The resulting sum-constellation is proved to be a regular QAM constellation of a larger size. Moreover, the superiority of NOMA over time-division multiple access (TDMA) in terms of minimum Euclidean distance is rigorously proved. Furthermore, the optimal rate allocation among the two users is obtained in closed-form to further maximize the obtained minimum Euclidean distance of the received signal subject to a total rate constraint. Finally, simulation results are provided to verify our theoretical analysis and demonstrate the merits of the proposed NOMA over existing orthogonal and non-orthogonal designs.Comment: Submitted for possible journal publicatio

    Robustness maximization of parallel multichannel systems

    Get PDF
    Bit error rate (BER) minimization and SNR-gap maximization, two robustness optimization problems, are solved, under average power and bit-rate constraints, according to the waterfilling policy. Under peak-power constraint the solutions differ and this paper gives bit-loading solutions of both robustness optimization problems over independent parallel channels. The study is based on analytical approach with generalized Lagrangian relaxation tool and on greedy-type algorithm approach. Tight BER expressions are used for square and rectangular quadrature amplitude modulations. Integer bit solution of analytical continuous bit-rates is performed with a new generalized secant method. The asymptotic convergence of both robustness optimizations is proved for both analytical and algorithmic approaches. We also prove that, in conventional margin maximization problem, the equivalence between SNR-gap maximization and power minimization does not hold with peak-power limitation. Based on a defined dissimilarity measure, bit-loading solutions are compared over power line communication channel for multicarrier systems. Simulation results confirm the asymptotic convergence of both allocation policies. In non asymptotic regime the allocation policies can be interchanged depending on the robustness measure and the operating point of the communication system. The low computational effort of the suboptimal solution based on analytical approach leads to a good trade-off between performance and complexity.Comment: 27 pages, 8 figures, submitted to IEEE Trans. Inform. Theor
    • …
    corecore