537 research outputs found

    Compressor based approximate multiplier architectures for media processing applications

    Get PDF
    Approximate computing is an attractive technique to gain substantial improvement in the area, speed, and power in applications where exact computation is not required. This paper proposes two improved multiplier designs based on a new 4:2 approximate compressor circuit to simplify the hardware at the partial product reduction stage. The proposed multiplier designs are targeted towards error-tolerant applications. Exhaustive error and hardware analysis has been carried out on the existing and proposed multiplier designs. The results prove that the proposed approximate multiplier architecture performs better than the existing architectures without significant compromise on quality metrics. Experimental results show that die-area and power consumed are reduced upto 28%, and 25.29% respectively in comparison with the existing designs without significant compromise on accuracy

    The Fifth NASA Symposium on VLSI Design

    Get PDF
    The fifth annual NASA Symposium on VLSI Design had 13 sessions including Radiation Effects, Architectures, Mixed Signal, Design Techniques, Fault Testing, Synthesis, Signal Processing, and other Featured Presentations. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The presentations share insights into next generation advances that will serve as a basis for future VLSI design

    A Survey on Approximate Multiplier Designs for Energy Efficiency: From Algorithms to Circuits

    Full text link
    Given the stringent requirements of energy efficiency for Internet-of-Things edge devices, approximate multipliers, as a basic component of many processors and accelerators, have been constantly proposed and studied for decades, especially in error-resilient applications. The computation error and energy efficiency largely depend on how and where the approximation is introduced into a design. Thus, this article aims to provide a comprehensive review of the approximation techniques in multiplier designs ranging from algorithms and architectures to circuits. We have implemented representative approximate multiplier designs in each category to understand the impact of the design techniques on accuracy and efficiency. The designs can then be effectively deployed in high-level applications, such as machine learning, to gain energy efficiency at the cost of slight accuracy loss.Comment: 38 pages, 37 figure

    Improving the Hardware Performance of Arithmetic Circuits using Approximate Computing

    Get PDF
    An application that can produce a useful result despite some level of computational error is said to be error resilient. Approximate computing can be applied to error resilient applications by intentionally introducing error to the computation in order to improve performance, and it has been shown that approximation is especially well-suited for application in arithmetic computing hardware. In this thesis, novel approximate arithmetic architectures are proposed for three different operations, namely multiplication, division, and the multiply accumulate (MAC) operation. For all designs, accuracy is evaluated in terms of mean relative error distance (MRED) and normalized mean error distance (NMED), while hardware performance is reported in terms of critical path delay, area, and power consumption. Three approximate Booth multipliers (ABM-M1, ABM-M2, ABM-M3) are designed in which two novel inexact partial product generators are used to reduce the dimensions of the partial product matrix. The proposed multipliers are compared to other state-of-the-art designs in terms of both accuracy and hardware performance, and are found to reduce power consumption by up to 56% when compared to the exact multiplier. The function of the multipliers is verified in several image processing applications. Two approximate restoring dividers (AXRD-M1, AXRD-M2) are proposed along with a novel inexact restoring divider cell. In the first divider, the conventional cells are replaced with the proposed inexact cells in several columns. The second divider computes only a subset of the trial subtractions, after which the divisor and partial remainder are rounded and encoded so that they may be used to estimate the remaining quotient bits. The proposed dividers are evaluated for accuracy and hardware performance alongside several benchmarking designs, and their function is verified using change detection and foreground extraction applications. An approximate MAC unit is presented in which the multiplication is implemented using a modified version of ABM-M3. The delay is reduced by using a fused architecture where the accumulator is summed as part of the multiplier compression. The accuracy and hardware savings of the MAC unit are measured against several works from the literature, and the design is utilized in a number of convolution operations

    Design and Evaluation of Approximate Logarithmic Multipliers for Low Power Error-Tolerant Applications

    Get PDF
    In this work, the designs of both non-iterative and iterative approximate logarithmic multipliers (LMs) are studied to further reduce power consumption and improve performance. Non-iterative approximate LMs (ALMs) that use three inexact mantissa adders, are presented. The proposed iterative approximate logarithmic multipliers (IALMs) use a set-one adder in both mantissa adders during an iteration; they also use lower-part-or adders and approximate mirror adders for the final addition. Error analysis and simulation results are also provided; it is found that the proposed approximate LMs with an appropriate number of inexact bits achieve a higher accuracy and lower power consumption than conventional LMs using exact units. Compared with conventional LMs with exact units, the normalized mean error distance (NMED) of 16-bit approximate LMs is decreased by up to 18% and the power-delay product (PDP) has a reduction of up to 37%. The proposed approximate LMs are also compared with previous approximate multipliers; it is found that the proposed approximate LMs are best suitable for applications allowing larger errors, but requiring lower energy consumption and low power. Approximate Booth multipliers fit applications with less stringent power requirements, but also requiring smaller errors. Case studies for error-tolerant computing applications are provided

    PERFORMANCE ANALYSIS OF HIGH SPEED LOW POWER TG -MULTIPLIERS DESIGNS WITH RADIX-4 MODIFIED BOOTH RECODING

    Get PDF
    ABSTRACT: Multiplication may be a for the most part used mathematical process, considerably in signal process and scientific applications. Multiplication having hardware challenge, and therefore the main criterion of upper speed, lower cost, and fewer VLSI space, the most apprehension in customary multiplication, typically realized by K no of cycles with shifting and adding, is to hurry up the underlying multi-operand addition of partial merchandise. during this paper we have a tendency to studied the changed Booth encryption (MBE) technique that has been introduced to scale back the quantity of PP rows, still keeping each straightforward and quick enough the generation method of every row

    Ultra-Low Power and Radiation Hardened Asynchronous Circuit Design

    Get PDF
    This dissertation proposes an ultra-low power design methodology called bit-wise MTNCL for bit-wise pipelined asynchronous circuits, which combines multi-threshold CMOS (MTCMOS) with bit-wise pipelined NULL Convention Logic (NCL) systems. It provides the leakage power advantages of an all high-Vt implementation with a reasonable speed penalty compared to the all low-Vt implementation, and has negligible area overhead. It was enhanced to handle indeterminate standby states. The original MTNCL concept was enhanced significantly by sleeping Registers and Completion Logic as well as Combinational circuits to reduce area, leakage power, and energy per operation. This dissertation also develops an architecture that allows NCL circuits to recover from a Single Event Upset (SEU) or Single Event Latchup (SEL) fault without any data loss. Finally, an accurate throughput derivation formula for pipelined NCL circuits was developed, which can be used for static timing analysis

    Designing Approximate Computing Circuits with Scalable and Systematic Data-Driven Techniques

    Get PDF
    Semiconductor feature size has been shrinking significantly in the past decades. This decreasing trend of feature size leads to faster processing speed as well as lower area and power consumption. Among these attributes, power consumption has emerged as the primary concern in the design of integrated circuits in recent years due to the rapid increasing demand of energy efficient Internet of Things (IoT) devices. As a result, low power design approaches for digital circuits have become of great attractive in the past few years. To this end, approximate computing in hardware design has emerged as a promising design technique. It provides design opportunities to improve timing and energy efficiency by relaxing computing quality. This technique is feasible because of the error-resiliency of many emerging resource-hungry computational applications such as multimedia processing and machine learning. Thus, it is reasonable to utilize this characteristic to trade an acceptable amount of computing quality for energy saving. In the literature, most prior works on approximate circuit design focus on using manual design strategies to redesign fundamental computational blocks such as adders and multipliers. However, the manual design techniques are not suitable for system level hardware due to much higher design complexity. In order to tackle this challenge, we focus on designing scalable, systematic and general design methodologies that are applicable on any circuits. In this paper, we present two novel approximate circuit design methods based on machine learning techniques. Both methods skip the complicated manual analysis steps and primarily look at the given input-error pattern to generate approximate circuits. Our first work presents a framework for designing compensation block, an essential component in many approximate circuits, based on feature selection. Our second work further extends and optimizes this framework and integrates data-driven consideration into the design. Several case studies on fixed-width multipliers and other approximate circuits are presented to demonstrate the effectiveness of the proposed design methods. The experimental results show that both of the proposed methods are able to automatically and efficiently design low-error approximate circuits
    • …
    corecore