397 research outputs found

    Protograph-Based LDPC Code Design for Shaped Bit-Metric Decoding

    Get PDF
    A protograph-based low-density parity-check (LDPC) code design technique for bandwidth-efficient coded modulation is presented. The approach jointly optimizes the LDPC code node degrees and the mapping of the coded bits to the bit-interleaved coded modulation (BICM) bit-channels. For BICM with uniform input and for BICM with probabilistic shaping, binary-input symmetric-output surrogate channels for the code design are used. The constructed codes for uniform inputs perform as good as the multi-edge type codes of Zhang and Kschischang (2013). For 8-ASK and 64-ASK with probabilistic shaping, codes of rates 2/3 and 5/6 with blocklength 64800 are designed, which operate within 0.63dB and 0.69dB of continuous AWGN capacity for a target frame error rate of 1e-3 at spectral efficiencies of 1.38 and 4.25 bits/channel use, respectively.Comment: 9 pages, 10 figures. arXiv admin note: substantial text overlap with arXiv:1501.0559

    Multiplicatively Repeated Non-Binary LDPC Codes

    Full text link
    We propose non-binary LDPC codes concatenated with multiplicative repetition codes. By multiplicatively repeating the (2,3)-regular non-binary LDPC mother code of rate 1/3, we construct rate-compatible codes of lower rates 1/6, 1/9, 1/12,... Surprisingly, such simple low-rate non-binary LDPC codes outperform the best low-rate binary LDPC codes so far. Moreover, we propose the decoding algorithm for the proposed codes, which can be decoded with almost the same computational complexity as that of the mother code.Comment: To appear in IEEE Transactions on Information Theor

    Improving soft FEC performance for higher-order modulations via optimized bit channel mappings

    Get PDF
    Soft forward error correction with higher-order modulations is often implemented in practice via the pragmatic bit-interleaved coded modulation paradigm, where a single binary code is mapped to a nonbinary modulation. In this paper, we study the optimization of the mapping of the coded bits to the modulation bits for a polarization-multiplexed fiber-optical system without optical inline dispersion compensation. Our focus is on protograph-based low-density parity-check (LDPC) codes which allow for an efficient hardware implementation, suitable for high-speed optical communications. The optimization is applied to the AR4JA protograph family, and further extended to protograph-based spatially coupled LDPC codes assuming a windowed decoder. Full field simulations via the split-step Fourier method are used to verify the analysis. The results show performance gains of up to 0.25 dB, which translate into a possible extension of the transmission reach by roughly up to 8%, without significantly increasing the system complexity.Comment: This paper was published in Optics Express and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-22-12-1454

    Spatially Coupled Codes and Optical Fiber Communications: An Ideal Match?

    Full text link
    In this paper, we highlight the class of spatially coupled codes and discuss their applicability to long-haul and submarine optical communication systems. We first demonstrate how to optimize irregular spatially coupled LDPC codes for their use in optical communications with limited decoding hardware complexity and then present simulation results with an FPGA-based decoder where we show that very low error rates can be achieved and that conventional block-based LDPC codes can be outperformed. In the second part of the paper, we focus on the combination of spatially coupled LDPC codes with different demodulators and detectors, important for future systems with adaptive modulation and for varying channel characteristics. We demonstrate that SC codes can be employed as universal, channel-agnostic coding schemes.Comment: Invited paper to be presented in the special session on "Signal Processing, Coding, and Information Theory for Optical Communications" at IEEE SPAWC 201
    • …
    corecore