52,723 research outputs found

    Synthèse de réseaux de distribution d'horloges en présence de variations du procédé de fabrication

    Get PDF
    Design of clock distributions networks in presence of process variations -- Importance des variations spatiales de la constante de temps du transistor MOS -- Pipelined H-trees for high-speed clocking of large integrated systems in presence of process variations -- Conception de réseaux de distribution d'horloges fiables et à faible consommation de puissance -- Design of low-power and reliable logic-based H-trees -- Sources des variations spatiales de la constante de temps du transistor MOS -- Spatial characterization of process variations via MOS transistor time constants in VLSI & WSI -- Techniques de minimisation du biais de synchronisation par calibration de délai -- Minimizing process-induced skew using delay tuning

    Modeling of thermally induced skew variations in clock distribution network

    Get PDF
    Clock distribution network is sensitive to large thermal gradients on the die as the performance of both clock buffers and interconnects are affected by temperature. A robust clock network design relies on the accurate analysis of clock skew subject to temperature variations. In this work, we address the problem of thermally induced clock skew modeling in nanometer CMOS technologies. The complex thermal behavior of both buffers and interconnects are taken into account. In addition, our characterization of the temperature effect on buffers and interconnects provides valuable insight to designers about the potential impact of thermal variations on clock networks. The use of industrial standard data format in the interface allows our tool to be easily integrated into existing design flow

    Variant X-Tree Clock Distribution Network and Its Performance Evaluations

    Get PDF

    Voltage noise analysis with ring oscillator clocks

    Get PDF
    Voltage noise is the main source of dynamic variability in integrated circuits and a major concern for the design of Power Delivery Networks (PDNs). Ring Oscillators Clocks (ROCs) have been proposed as an alternative to mitigate the negative effects of voltage noise as technology scales down and power density increases. However, their effectiveness highly depends on the design parameters of the PDN, power consumption patterns of the system and spatial locality of the ROCs within the clock domains. This paper analyzes the impact of the PDN parameters and ROC location on the robustness to voltage noise. The capability of reacting instantaneously to unpredictable voltage droops makes ROCs an attractive solution, which allows to reduce the amount of decoupling capacitance without downgrading performance. Tolerance to voltage noise and related benefits can be increased by using multiple ROCs and reducing the size of the clock domains. The analysis shows that up to 83% of the margins for voltage noise and up to 27% of the leakage power can be reduced by using local ROCs.Peer ReviewedPostprint (author's final draft

    Computing centroids in current-mode technique

    Get PDF
    A novel current-mode circuit for calculating the centre of mass of a discrete distribution of currents is described. It is simple and compact, an ideal building block for VLSI analogue IC design. The design principles are presented as well as the simulated behaviour of a one-dimensional implementation
    corecore