246 research outputs found

    Control and Synchronization of Neuron Ensembles

    Full text link
    Synchronization of oscillations is a phenomenon prevalent in natural, social, and engineering systems. Controlling synchronization of oscillating systems is motivated by a wide range of applications from neurological treatment of Parkinson's disease to the design of neurocomputers. In this article, we study the control of an ensemble of uncoupled neuron oscillators described by phase models. We examine controllability of such a neuron ensemble for various phase models and, furthermore, study the related optimal control problems. In particular, by employing Pontryagin's maximum principle, we analytically derive optimal controls for spiking single- and two-neuron systems, and analyze the applicability of the latter to an ensemble system. Finally, we present a robust computational method for optimal control of spiking neurons based on pseudospectral approximations. The methodology developed here is universal to the control of general nonlinear phase oscillators.Comment: 29 pages, 6 figure

    Optimal Control of Weakly Forced Nonlinear Oscillators

    Get PDF
    Optimal control of nonlinear oscillatory systems poses numerous theoretical and computational challenges. Motivated by applications in neuroscience, we develop tools and methods to synthesize optimal controls for nonlinear oscillators described by reduced order dynamical systems. Control of neural oscillations by external stimuli has a broad range of applications, ranging from oscillatory neurocomputers to deep brain stimulation for Parkinson\u27s disease. In this dissertation, we investigate fundamental limits on how neuron spiking behavior can be altered by the use of an external stimulus: control). Pontryagin\u27s maximum principle is employed to derive optimal controls that lead to desired spiking times of a neuron oscillator, which include minimum-power and time-optimal controls. In particular, we consider practical constraints in such optimal control designs including a bound on the control amplitude and the charge-balance constraint. The latter is important in neural stimulations used to avoid from the undesirable effects caused by accumulation of electric charge due to external stimuli. Furthermore, we extend the results in controlling a single neuron and consider a neuron ensemble. We, specifically, derive and synthesize time-optimal controls that elicit simultaneous spikes for two neuron oscillators. Robust computational methods based on homotopy perturbation techniques and pseudospectral approximations are developed and implemented to construct optimal controls for spiking and synchronizing a neuron ensemble, for which analytical solutions are intractable. We finally validate the optimal control strategies derived using the models of phase reduction by applying them to the corresponding original full state-space models. This validation is largely missing in the literature. Moreover, the derived optimal controls have been experimentally applied to control the synchronization of electrochemical oscillators. The methodology developed in this dissertation work is not limited to the control of neural oscillators and can be applied to a broad class of nonlinear oscillatory systems that have smooth dynamics

    Charge-Balanced Minimum-Power Controls for Spiking Neuron Oscillators

    Full text link
    In this paper, we study the optimal control of phase models for spiking neuron oscillators. We focus on the design of minimum-power current stimuli that elicit spikes in neurons at desired times. We furthermore take the charge-balanced constraint into account because in practice undesirable side effects may occur due to the accumulation of electric charge resulting from external stimuli. Charge-balanced minimum-power controls are derived for a general phase model using the maximum principle, where the cases with unbounded and bounded control amplitude are examined. The latter is of practical importance since phase models are more accurate for weak forcing. The developed optimal control strategies are then applied to both mathematically ideal and experimentally observed phase models to demonstrate their applicability, including the phase model for the widely studied Hodgkin-Huxley equations.Comment: 24 pages, 12 figure

    Optimal Subharmonic Entrainment

    Full text link
    For many natural and engineered systems, a central function or design goal is the synchronization of one or more rhythmic or oscillating processes to an external forcing signal, which may be periodic on a different time-scale from the actuated process. Such subharmonic synchrony, which is dynamically established when N control cycles occur for every M cycles of a forced oscillator, is referred to as N:M entrainment. In many applications, entrainment must be established in an optimal manner, for example by minimizing control energy or the transient time to phase locking. We present a theory for deriving inputs that establish subharmonic N:M entrainment of general nonlinear oscillators, or of collections of rhythmic dynamical units, while optimizing such objectives. Ordinary differential equation models of oscillating systems are reduced to phase variable representations, each of which consists of a natural frequency and phase response curve. Formal averaging and the calculus of variations are then applied to such reduced models in order to derive optimal subharmonic entrainment waveforms. The optimal entrainment of a canonical model for a spiking neuron is used to illustrate this approach, which is readily extended to arbitrary oscillating systems

    Robust Engineering of Dynamic Structures in Complex Networks

    Get PDF
    Populations of nearly identical dynamical systems are ubiquitous in natural and engineered systems, in which each unit plays a crucial role in determining the functioning of the ensemble. Robust and optimal control of such large collections of dynamical units remains a grand challenge, especially, when these units interact and form a complex network. Motivated by compelling practical problems in power systems, neural engineering and quantum control, where individual units often have to work in tandem to achieve a desired dynamic behavior, e.g., maintaining synchronization of generators in a power grid or conveying information in a neuronal network; in this dissertation, we focus on developing novel analytical tools and optimal control policies for large-scale ensembles and networks. To this end, we first formulate and solve an optimal tracking control problem for bilinear systems. We developed an iterative algorithm that synthesizes the optimal control input by solving a sequence of state-dependent differential equations that characterize the optimal solution. This iterative scheme is then extended to treat isolated population or networked systems. We demonstrate the robustness and versatility of the iterative control algorithm through diverse applications from different fields, involving nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI), electrochemistry, neuroscience, and neural engineering. For example, we design synchronization controls for optimal manipulation of spatiotemporal spike patterns in neuron ensembles. Such a task plays an important role in neural systems. Furthermore, we show that the formation of such spatiotemporal patterns is restricted when the network of neurons is only partially controllable. In neural circuitry, for instance, loss of controllability could imply loss of neural functions. In addition, we employ the phase reduction theory to leverage the development of novel control paradigms for cyclic deferrable loads, e.g., air conditioners, that are used to support grid stability through demand response (DR) programs. More importantly, we introduce novel theoretical tools for evaluating DR capacity and bandwidth. We also study pinning control of complex networks, where we establish a control-theoretic approach to identifying the most influential nodes in both undirected and directed complex networks. Such pinning strategies have extensive practical implications, e.g., identifying the most influential spreaders in epidemic and social networks, and lead to the discovery of degenerate networks, where the most influential node relocates depending on the coupling strength. This phenomenon had not been discovered until our recent study

    A new approach to optimal control of conductance-based spiking neurons

    Get PDF
    This paper presents an algorithm for solving the minimum-energy optimal control problem of conductance-based spiking neurons. The basic procedure is (1) to construct a conductance-based spiking neuron oscillator as an affine nonlinear system, (2) to formulate the optimal control problem of the affine nonlinear system as a boundary value problem based on the Pontryagin’s maximum principle, and (3) to solve the boundary value problem using the homotopy perturbation method. The construction of the minimum-energy optimal control in the framework of the homotopy perturbation technique is novel and valid for a broad class of nonlinear conductance-based neuron models. The applicability of our method in the FitzHugh-Nagumo and Hindmarsh-Rose models is validated by simulations

    Optimal Control and Synchronization of Dynamic Ensemble Systems

    Get PDF
    Ensemble control involves the manipulation of an uncountably infinite collection of structurally identical or similar dynamical systems, which are indexed by a parameter set, by applying a common control without using feedback. This subject is motivated by compelling problems in quantum control, sensorless robotic manipulation, and neural engineering, which involve ensembles of linear, bilinear, or nonlinear oscillating systems, for which analytical control laws are infeasible or absent. The focus of this dissertation is on novel analytical paradigms and constructive control design methods for practical ensemble control problems. The first result is a computational method %based on the singular value decomposition (SVD) for the synthesis of minimum-norm ensemble controls for time-varying linear systems. This method is extended to iterative techniques to accommodate bounds on the control amplitude, and to synthesize ensemble controls for bilinear systems. Example ensemble systems include harmonic oscillators, quantum transport, and quantum spin transfers on the Bloch system. To move towards the control of complex ensembles of nonlinear oscillators, which occur in neuroscience, circadian biology, electrochemistry, and many other fields, ideas from synchronization engineering are incorporated. The focus is placed on the phenomenon of entrainment, which refers to the dynamic synchronization of an oscillating system to a periodic input. Phase coordinate transformation, formal averaging, and the calculus of variations are used to derive minimum energy and minimum mean time controls that entrain ensembles of non-interacting oscillators to a harmonic or subharmonic target frequency. In addition, a novel technique for taking advantage of nonlinearity and heterogeneity to establish desired dynamical structures in collections of inhomogeneous rhythmic systems is derived
    • …
    corecore